
Future Generation Computer Systems 144 (2023) 179–191

i
s
i
i
d
a
a
m
b
a
i
o
a
w
c

a
r
A
a
a

(
(

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Generating valid test data through data cloning
Xavier Oriol ∗, Ernest Teniente, Marc Maynou, Sergi Nadal
Universitat Politècnica de Catalunya, Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 30 July 2022
Received in revised form 18 December 2022
Accepted 22 February 2023
Available online 24 February 2023

Dataset link: https://mydisk.cs.upcedu/s/E8
dxK6X9kWam3nN

Keywords:
Database testing
Test data
Data cloning

a b s t r a c t

One of the most difficult, time-consuming and error-prone tasks during software testing is that of
manually generating the data required to properly run the test. This is even harder when we need to
generate data of a certain size and such that it satisfies a set of conditions, or business rules, specified
over an ontology. To solve this problem, some proposals exist to automatically generate database
sample data. However, they are only able to generate data satisfying primary or foreign key constraints
but not more complex business rules in the ontology.

We propose here a more general solution for generating test data which is able to deal with
expressive business rules. Our approach, which is entirely based on the chase algorithm, first generates
a small sample of valid test data (by means of an automated reasoner), then clones this sample data,
and finally, relates the cloned data with the original data. All the steps are performed iteratively until
a valid database of a certain size is obtained. We theoretically prove the correctness of our approach,
and experimentally show its practical applicability.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Data is an essential component of a software system. Dur-
ng software testing, it is crucial to feed the system with some
ample data to be able to simulate the execution of the system
n a real environment. Without proper test data, it is almost
mpossible to ensure the correct behaviour of the system once
eployed [1]. Test data is often generated manually or through
d-hoc programmed functions. This entails significant economic
nd time costs, as well as being an error-prone activity. This
anual generation also makes practically impossible for the data
eing manually created to be consistent with the business rules
nd the constraints of the system [2], not to say when the data
s provided with some ontological layer, such as in the context of
ntology-based data access [3], where conditions might become
rbitrarily complex. This is because the business rules of a soft-
are system use to involve very complex data implications that
an hardly be captured solely by human intervention.
As an example, consider the UML [4] schema for a message

pplication shown in Fig. 1. Shortly, Users send Messages that are
eceived by ConversationGroups, which might be Groups, or Pairs.
Pair is a pair of two users, while a Group has several members
nd a unique owner. We assume that Groups, ConversationGroups,
nd Pairs are identified by id, Users by phone, and Messages by

∗ Corresponding author.
E-mail addresses: xoriol@essi.upc.edu (X. Oriol), teniente@essi.upc.edu

E. Teniente), marc.maynou@upc.edu (M. Maynou), snadal@essi.upc.edu
S. Nadal).
ttps://doi.org/10.1016/j.future.2023.02.020
167-739X/© 2023 The Authors. Published by Elsevier B.V. This is an open access ar
sender, receiver, and data. Besides the cardinality constraints, the
schema contains also four business rules stated as SQL asser-
tions [5] which correspond to conditions that must always be
satisfied in the domain represented by the schema and that, thus,
must hold for the data to be consistent. These SQL assertions
avoid users making pairs with themselves, owning groups they do
not belong to, or sending messages to conversation groups they
are not part of. The practical importance of using business rules
in software development, whether specified as SQL assertions or
through any other language, is highlighted in several blogs, in
stack overflow or GitHub repositories (see for instance, [6–8]).

To generate sufficiently large test data for scenarios like our
running example, constraints and business rules in the schema
must be taken into account to ensure they are satisfied by the
generated data. Hence, software engineers have to develop ad-
hoc methods that generate the data in such a way that reach
the desired size without violating any of these rules. This is
well-known to be a complex and arduous task which makes
close to impossible for a software engineer to manually code
this program. Current proposals to automatically generate test
data satisfying business rules do not serve our purposes. Indeed,
previous proposals either allow only to generate a small sample
instances of data satisfying the conditions [9–11], or are able to
generate a large set of data but considering only very limited
database constraints on it (i.e., primary/foreign key constraints
and attribute checks) [12,13]. This limitation is rooted in the
fact that, when considering general business rules, the traditional
approach is based on relying in a SAT solver, whose complexity is
NP-hard if we limit the search scope to some boundary, or even
undecidable when not limiting it at all.
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2023.02.020
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.02.020&domain=pdf
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
http://creativecommons.org/licenses/by/4.0/
mailto:xoriol@essi.upc.edu
mailto:teniente@essi.upc.edu
mailto:marc.maynou@upc.edu
mailto:snadal@essi.upc.edu
https://doi.org/10.1016/j.future.2023.02.020
http://creativecommons.org/licenses/by/4.0/

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

l
a
e
T
i
i

e
o
S
m
p
e
k
i
o
m
p

i
w
a
t
a
t
f
k
o
a
v
c

Fig. 1. Application schema with constraints and business rules expressed as SQL assertions.
The main goal of this paper is to overcome the previous
imitations by proposing an approach to automatically generate
large set of representative test data satisfying a given set of
xpressive business rules defined in a certain database schema.
he test criterion for assessing the validity of the generated data
s that no business rule will be violated when this data is inserted
n the database.

Our approach is agnostic as far as the language used for
xpressing the business rules, provided that the language is first
rder (i.e., we accept business rules written in SQL, UML/OCL,
PARQL, Datalog, or OWL). This is because, in the core, our
ethod relies on data dependencies such as tuple-generating de-
endencies (TGDs), disjunctive embedded dependencies (DEDs),
quality-generating dependencies (EGDs), and denials. It is well
nown in the literature how to translate business rules specified
n such languages into this formalism [14,15]. The independence
f our approach from the language used to specify business rules
akes it usable for different kinds of data platforms, and in
articular for those enabling data-intensive storage.
In a nutshell, our method, works as follows. Assuming an

nitial small sample set of data satisfying the business rules,
hich can been obtained for instance by applying an existing
utomated reasoner [9–11], the core idea under our approach is
hat of extensively cloning parts of this initial database to obtain
large set of representative data. In particular, the approach has
wo main phases: the cloning phase, and the merging phase. The
ormer is intended to grow the initial database instance while
eeping the consistency of the data. To achieve it, whenever part
f this cloned data does not satisfy some of the business rules, we
lso clone the necessary data from the initial sample to repair this
iolation. The merging phase is intended to connect the newly

reated data during the clone phase, with the original data from

180
the database. Indeed, without this step, we would only end up
with a large database of unconnected facts. During this step, we
merge some of the cloned data with the original data they are
cloned from. To do so, we have to additionally analyse which data
can be merged without incurring into a violation of some business
rules.

As we later show, both processes can be implemented with
a chase algorithm. Indeed, roughly speaking, cloning can be
achieved by means of TGDs, and merging can be achieved by
means of EGDs. Furthermore, considering that scalability is
paramount for our objective of achieving large test databases, we
show that our approach can run in linear time with regards to
the desired size of the final database. Intuitively, this is because
we can run our approach of cloning and merging in small chunks
of a fixed size, where each chunk takes some constant time to
execute. Hence, the final execution time is linearly proportional
to the number of chunks executed to achieve the desired database
size.

It is worth mentioning that the test data we generate are valid
with respect to a given schema and set of business rules. Thus, if
any of these is modified we should execute again our algorithm
in order to obtain valid test data for the new schema and rules.
Nevertheless, this does not pose a significant problem because of
the efficiency of our proposal. The new data obtained is the one
that should be inserted within the database and used for testing
with the new schema.

Summarizing, the main contributions of our approach are the
following:

• We propose an approach to automatically generate a large
set of representative test data satisfying a set of expressive

business rules.

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

d

O
S
a
c
i
p
w
w
r

2

T
A

a
i

T
(

D
s
I
D
d
I
i
r

t
c

S

s
r
r
t

D
g
t
s

D
i

m

• We formally proof the correctness of the approach, and its
linear data-complexity.

• We provide experiments showing that the run time of our
approach beats current alternatives from the literature, in
essence, by experimentally showing that our approach runs
linearly whereas SAT solving alternatives grows exponen-
tially.

• We provide experiments analysing in detail how the dif-
ferent parameters of our cloning method affect its perfor-
mance.

Throughout the paper we will provide all details and repro-
ucibility instructions of the experiments we have performed.

utline. The rest of the paper is structured as follows. Next,
ection 2 reviews preliminary concepts. Section 3, presents our
pproach to clone the initial sample set of data. Section 4, dis-
usses on the characteristics that a chase algorithm should satisfy
n order to be applicable to our approach. In Section 5, we ex-
erimentally validate our approach. Section 6 reviews related
ork. Finally, we summarize our conclusions and point out future
ork in Section 7. Our paper is complemented with an extended
unning example an evaluation on a real-world scenario in A.

. Preliminaries

erms, and atoms. A term t is either a variable or a constant.
n atom is formed by a n-ary predicate p together with n terms,

i.e., p(t1, . . . , tn). We may write p(t) for short. If all the terms t of
n atom are constants, we call the atom to be ground (and to be an
nstance of p). We distinguish a special (infinite) set of constants
we refer as labelled nulls, which we denote #0,#1,#2, . . .

GDs, DEDs, Denials, and EGDs. A tuple-generating dependency
TGD) is a rule of the form ∀x.φ(x) → ∃y.ψ(x, y), where φ and ψ
are conjunctions of atoms. φ is said to be the left-hand side (LHS)
of the rule, and ψ to be its right-hand side (RHS). The variables
appearing in the LHS (x) are referred as universal, whereas those
only appearing in the RHS (y) are referred as existential variables.
isjunctive embedded dependencies (DEDs) are a natural exten-
ion of TGDs where the RHS of the rule can contain disjunctions.
.e., a DED is a rule of the form: ∀x.φ(x) →

⋁
i=1..m ∃yi.ψi(x, yi).

enials are a natural extension of DEDs where the number of
isjunctions is 0. I.e., a denial is a rule of the form: ∀x.φ(x) → ⊥.
ntuitively, a denial expresses a condition that should never hold
n the database. An equality generating dependency (EGD) is a
ule of the form: ∀x.φ(x) → x1 = x2 where φ is a conjunction
of atoms and xi ∈ x. We refer to any TGD, DED, Denial and EGD
o be a constraint. Hereinafter, we might omit quantifiers as they
an be understood by context.

ubstitution. A substitution θ is a set of the form {x1/t1, . . . , xn/tn}
where each variable xi is unique. The domain of a substitution is
the set of all xi and is referred as dom(θ). We say that θ is ground
if every ti is a constant. The atom aθ is the atom resulting from
imultaneously substituting any occurrence of xi in l for its cor-
esponding ti. We define the conjunction φθ as the conjunction
esulting from simultaneously applying the substitution θ to all
he atoms in φ.

atabases, and database consistency. A database D is a set of
round atoms we call facts. We say that a ground atom a is
rue in D iff a ∈ D, and denote it as D |H a. Similarly, we
ay that a negated ground atom a is true in D iff a ̸∈ D. We
extend this notion of satisfaction to conjunctions and, ultimately,
to constraints. That is, a constraint c is satisfied in D (noted as

|H c) iff for all substitutions of universal variables that makes
ts LHS true, there exists a substitution for its existential variables
 c

181
that makes the RHS true. Given a set of constraints, we say that
D is consistent if it satisfies all of them. It is worth noting that,
in the case of denials, if there is a substitution for the universal
variables that makes the LHS true, the denial is violated.

Chase. The chase is an algorithm for deducing new facts from pre-
vious facts according to the constraints. In essence, it consists in,
whenever some TGD c is violated into some database D, because
of some substitution θ for its universal variables, instantiate the
RHS of the rule with θσ , where σ is a substitution from the exis-
tential variables into new fresh labelled nulls. Whenever an EGD
is violated into D, because of some substitution θ for its universal
variables, where x1θ ̸= x2θ , there are two possibilities: (1) if some
xiθ is a labelled null, the chase replaces any appearance of xiθ for
xjθ in D; (2) if both are constants, the chase terminates without
finding any solution. Similarly, if a denial is violated when chasing
some database, the chase returns no solution. Finally, DEDs makes
the chase execution to create a search space for finding a solution.
Indeed, each disjunction represents a different way that the chase
can apply to repair the violation. Intuitively, DEDs makes the
chase to create several chase-branches (one for each disjunction
in the RHS of the DED) to find a solution, whereas Denials and
EGDs cuts some of these branches. We refer the reader to [16]
for an in-depth introduction to the chase algorithm.

Homomorphism. Given two databases D1 and D2, an homomor-
phism from D1 to D2 is a function h from constants in D1 into
constants from D2 s.t.: (1) every constant that is not a labelled
null is mapped into itself. That is, only labelled nulls might be
mapped to other constants different than themselves; (2) if an
atom a(c1, . . . , cn) exists in D1, a(h(c1), . . . , h(cn)) appears in D2.

3. Our approach

Our goal is to obtain a large database from an original small
one, where all the constraints are satisfied. We assume that the
original database already satisfies the constraints. This can be
achieved by means of an automated reasoner (e.g. [9–11]), or by
manually preparing the data. We also assume that the constraints
to satisfy are given under the form of TGDs, DEDs, EGDs, and
denials, which are known to be expressive enough to deal beyond
typical dependency database constraints (e.g., unique constraints,
foreign keys, etc.). These TGDs, DEDs, EGDs and denials can be
automatically translated from any first-order language (e.g., a
translation from SQL can be achieved following [15]).

The key idea underlying our approach is to clone small parts of
the original database to obtain a larger one. In particular, we clone
some initial parts, originally requested by the user,1 and then,
if those new cloned parts violate some constraint, we clone the
necessary data from the original database to repair such violation.
Revising our running example, assume that we aim to clone some
Group g into another Group g ′. There is a constraint forcing each
group to have at least one member. Then, we will not only clone g
into g ′, but also clone some member u from g into u′, and make u′

be a member of g ′. Hence, we ensure that g ′ also has one member,
and avoid violating the minimum cardinality constraint.

In this way, we ensure that the clones satisfy the constraints,
however, in order to obtain a more representative database, we
apply a process of merging some of the cloned data, i.e., equating
its values. Indeed, if we only cloned data, we would end up with a
big database of unrelated facts, that is, data that cannot be joined
(e.g., following the previous example, we would only be creating
new groups, with totally newmembers, which would never be re-
lated with the original database). The process of merging is aimed

1 This initial parts can be selected also randomly if the user has no require-
ent. Our approach is agnostic from where the original requests for cloning
omes from.

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

t

n
f
d

e
T
t

C
D
T
T

I
c
l
f

3

h
a
t

o

(

3

n

p

i

c

c

3

o
o
n
a
s
e

T
h

G

D

t
i
t

Fig. 2. Cloning and Merging phases over the running example.

at relating cloned facts with the original facts of the database,
so that we can join the original data with the cloned one. For
instance, in the process of merging, we can make u′ to be equal
o u, making the groups g and g ′ share some member. All this
process is summarized in Fig. 2.

To merge cloned pieces of data, we must be careful with the
constraints. Certainly, merging data might alter the evaluation of
a constraint, thus, potentially violating it. Indeed, imagine that
there is a constraint forcing each user to belong to 1 group
only. This constraint makes impossible to merge the previous
users u′ and u. To avoid such situation, we first compute the
constants that are unmergeable due to a potential violation. Once
the unmergeable data is computed, we can merge the rest of data
ensuring the consistency of the final database.

All processes (i.e., cloning, computing unmergeable facts, and
merging) can be run with a chase algorithm. Indeed, we can
encode all such processes with TGDs and EGDs. Intuitively, the
cloning process can be accomplished by compiling the initial con-
straints into TGDs/EGDs that clones data and their required re-
pairs to avoid violations. The process of computing unmergeable
facts can be accomplished by compiling the initial constraints into
a set of TGDs/DEDs that derives which facts cannot be merged.
Finally, the merging process consists in applying an EGD rule that
merges cloned data in case there is no unmergeable issue. Fig. 3,
depicts the high-level overview of our pipeline. It is worth to
remark that, since our approach relies on the chase algorithm,
the output might contain labelled nulls. However, such labelled
ulls can be postprocessed, and replaced for real values, taken
rom a dictionary or randomly generated, with the condition that
ifferent labelled nulls must be replaced for different values.
On the following, we revisit all the processes separately. For

ach of them, we describe its rational, how to obtain the
GDs/EGDs rules, and argue its correctness by proving that, at
he end of each process, every constraint is satisfied.

onstraints prerequisites For our purposes, we require the TGDs,
EDs and EGDS not to contain any cartesian product in its LHS.
hat is, for any given two atoms a1 and an from the LHS of any
GD/DED, there is a list of atoms a1, a2, . . . , an such that, each ai

belongs to the LHS of the rule, and between any ai and ai+1 there
is, at least, one variable in common. In practice, this limitation
affects the cardinality constraints of n-ary associations (n > 2).
ndeed, in modelling languages such as UML, you can specify a
onstraint such as: for any pair of user and group, there is, at
est, one message. This kind of constraints, which are note very
requent, cannot be dealt within our approach.

.1. Cloning

The rationale behind the cloning process is twofold: on the one
and, we must clone all the data requested by the user to clone,
nd on the other, we must clone, recursively, all the data required
o satisfy the constraints of the database.

This phase is the unique one that expands the data of the

riginal database. As we are going to see, the size of the finally t

182
obtained database is x ∗ k, where x is the number of clones
requested by the user, and k a constant determined by the schema
and the current data. As a result, the user of our approach can
control the size of the final output by means of increasing x
which will cause a linear increase in the final output).

.1.1. Cloning user request
For the first purpose, we start, for each predicate p with arity

, creating a TGD such as the following:

(a1...an), PcloneReq(a1...an, a′

1...a
′

n) → cloneP(a1...an, a′

1...a
′

n).

Intuitively, this rule says that, if we have an atom p(a1, . . . , an),
and the user requests to clone p (represented in the rule with
PcloneReq(a1...an, a′

1...a
′
n)), then, we have to clone pwith the same

attributes. When we have to clone some tuple into another, we
must create the new tuple, and remember that each attribute is
a clone from the original one. This can be achieved creating, for
each relation cloneP predicate, the following TGD:

cloneP(a1...an, a′

1...a
′

n) → p(a′

1, . . . , a
′

n), clone(a1, a
′

1), . . . , clone(an, a
′

n)

For ease of presentation we might use the predicate cloneAll(a, a′)
to refer to clone(a1, a′

1), . . . , clone(an, a
′
n). Then, the previous rule

s summarized as:

loneP(a, a′) → p(a′), cloneAll(a, a′)

For instance, given the predicate user , we will build the following
TGDs:

user(u),UserCloneReq(u, u′) → cloneUser(u, u′).
loneUser(u, u′) → User(u′), clone(u, u′).

.1.2. Cloning repairs
For the second purpose we must clone, for each violation

ccurred within the cloned data, the corresponding repair for the
riginal data. Note that not all constraints have repairs (i.e., de-
ials). However, as we are going to see, denials will not suppose
ny problem with our technique. There are three kinds of con-
traints with repairs: (1) TGDs, (2) DEDs, (3) EGDs. We review
ach case separately.

GD constraints. For each TGDs of the form: body(x, y) →

ead(y, z) where body and head are conjunctions of atoms, we
build the cloning TGD:

body(x′
, y′), cloneAll(y, y′), head(y, z) → cloneAll(z, z ′), head(y′

, z ′)

Intuitively, the rule says that, when the cloned data satisfies the
body of the original TGD (and hence, might violate the constraint),
we check which is the head of the original data we have cloned,
and we clone it. E.g., the min cardinality constraint stating that
each group has, at least, one member (which is encoded as the
TGD Group(g, o) → Member(g, u)), brings the cloning TGD:

roup(g ′, o′),clone(g, g ′), clone(o, o′),Member(g, u) →

clone(u, u′),Member(g ′, u′)

ED constraints. For each DED of the form: body(x, y) → head1
(y, z1) ∨ ... ∨ headn(y, zn) we build n TGDs with the form:

body(x′
, y′), cloneAll(y, y′), head1(y, z) → cloneAll(z, z ′), head1(y′

, z ′)
...

body(x′
, y′), cloneAll(y, y′), headn(y, z) → cloneAll(z, z ′), headn(y′

, z ′)

Again, the rationale behind this TGDs is to copy the repair from
he original data into the cloned data. With this purpose, there
s one TGD for each possible way to repair the constraint. E.g.,
he complete hierarchy constraint stating that each conversa-
ion group is a group or a pair (which is encoded as the DED

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

t
e
i

3

d
h
s
t
w
d

T
a
c
c
n

P
h
t
c

c

o

s
h
m
l

Fig. 3. Cloning pipeline.
v
b
t

c

D
i
c
w
d

c
o
i
m

T
a
c
a
(

P
n
t

D

ConversationGroup(g) → Group(g) ∨ Pair(g)) brings the cloning
TGDs:

ConversationGroup(g ′), clone(g, g ′),Group(g) → Group(g ′).
ConversationGroup(g ′), clone(g, g ′), Pair(g) → Pair(g ′).

EGD constraints. For each EGD of the form: body(x) → xi = xj we
maintain, as it is, in the cloning TGDs. These EGDs are mandatory
to ensure that, if cloning twice the same repair r for an entity e,
and such e have a functional dependency with r , the two clones of
r are the same (and thus, we maintain the functional dependency
in the cloned data). E.g., the EGD stating that, fixed a Pair g ,
here is only 1 user playing the role of the 1st member (which is
ncoded as PairMem1(g, u), PairMem1(g, u2) → u = u2) is added
n the set of cloningTGDs.

.1.3. Justification of the correctness
When chasing the previously defined rules we obtain a new

atabase that satisfies all the constraints defined, whether they
ave a repair or not. The intuition is that, since the original data
atisfies all the constraints, only the cloned data could violate
hem. However, the cloned data comes from the original data,
hich means that, if the cloned data is inconsistent, the original
ata would also be inconsistent.

heorem 1. Let cloningTGDs(C) be the set of cloning TGDs from
n original set of constraints C. Given a database D, and a set of
onstraints C s.t. D |H C, and some clone request R, we have: after
hasing the original database D with cloningTGDs(C) we obtain a
ew database D′ s.t. D′

|H C.

roof. The proof is based on two steps. First, we build an
omomorphism from the labelled nulls into the constants. In
he second step, we use such homomorphism to show that no
onstraint is violated in D′.
Step (1) Consider the function original from labelled nulls into

onstants defined as:

riginal(a′) = a iff clone(a, a′)

Such function, intuitively, retrieve the original data where
ome labelled null is cloned from. By construction, original is an
omomorphism: its functional (every labelled null is mapped, at
ost, to one constant), its total (every labelled null is mapped, at

east, to one constant), and if p(x′) is true, p(original(x′)) is also
true. To realize the last point, note that, in any RGD, we only
derive p(x′) if p(original(x′)) appears in the LHS of the TGD.

Step (2) We now show, exploiting the homomorphism
original, that no constraint is violated in D′. EGDs are not vio-
lated because they are executed along the chase. So, the unique
183
constraints that might have been violated are TGDs, DEDs, and
denials. We start showing that no denial is violated, and then,
move to TGDs and DEDs.

To show that no denial is violated, we use a proof by contradic-
tion, hence, we assume that, for some denial c ∈ C , we have D′

̸|H

c. Since D′
̸|H c , we have that there is a substitution σ from the

ariables in c into constants such D′
̸|H cσ . Now, consider σo to

e the substitution σ after applying the original homomorphism
o its labelled nulls. We have D ̸|H cσo (contradiction).

To show that no TGD/DED is violated, we use a proof by
ontradiction, hence, we assume that, for some tgd/ded c ∈

C , we have D′
̸|H c . Since D′

̸|H c we have that there is a
substitution σ from the variables of the LHS in c into constants
such D′

̸|H cσ . Since there is no cartesian product in tgd/ded,
and by construction, no labelled nulls appears with a constant in
any atom (in exception of clone, which does not appear in any c),
either σ maps all variables into constants, or maps all variables
into labelled nulls, but does not mix them. If σ maps all variables
into constants, there is a violation in the original database D
(contradiction). Otherwise, consider σo to be the substitution σ
after applying the original homomorphism to its labelled nulls.
Since D′

̸|H cσ , we have that D′
|H LHS(cσ) (where LHS(c)

represents the LHS of c). Then, by the homomorphism, we have
|H LHS(cσo). Hence, since D is consistent, D has repaired C when

t is triggered by the values σo. Therefor, by construction, the
loning TGD corresponding to c has created the values RHS(cσo),
hich would repair the violation (contradiction). The case for
eds follows analogously. □

Apart from being correct, it is important to show that this
hase terminates. Intuitively, the chase terminates because we
nly clone repairs from the original database and, since the orig-
nal database is finite, cloning repairs from it is also finite. For-
ally:

heorem 2. Let cloningTGDs(C) be the set of cloning TGDs from
n original set of constraints C. Given a database D, and a set of
onstraints C s.t. D |H C, and some clone request R, chasing D with R
nd cloningTGDs(C) terminates, provided that the chase is complete
such as the core chase [16]).

roof. Assume that we have n clone requests. Clearly, cloning
times the original database satisfies the request (i.e., for each

uple p(t) from D, write p(t ′) in the cloned database together the
facts cloneAll(t, t ′)). Lets call each of these cloned databases D1, . . . ,
n. Clearly, D1∪· · ·∪Dn is a solution when chasing cloningTGDs(C)

with D and R, and it is finite. By definition, a complete chase
would find such solution (or a subset of it, in case a subset of
it is also a solution). □

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

3

m
m

n
t
s

3

w
h
c

P

F
m

3

m
v
t
f

p

W
s
m
d
l
E
t
f
g
n
m
c
w
t
c
p
i
D

n
a
p
f
e
v

s
c
o
G

n
h
f

t
t
v
b
i
L
o

o
H
a
f

.2. Computing unmergeable nulls

The idea here is to compute which labelled nulls cannot be
erged into its original constants. Then, in the next step, we can
erge those labelled nulls which are not unmergeable.
There are two possible reasons for not merging a labelled

ull into its original constant: (1) a user request, (2) merging
hem might encompass a constraint violation. We review both
ituations separately.

.2.1. Unmergeable because of a request
When a user requests to clone some tuple p(a) into p(a′),

e should not merge a with a′ to satisfy the user request of
aving a copy of p. Consequently, we need the following TGD for
omputing unmergeable nulls:

cloneReq(a1...an, a′

1...a
′

n) → unmergeable(a′

1), . . . , unmergeable(a′

n)

or instance, in our running example, we would create the un-
ergeable rule for users: UserCloneReq(u, u′) → unmergeable(u′).

.2.2. Unmergeable because of a constraint violation
When merging a null with its corresponding true constant, it

ight be the case that we violate some constraint. To avoid the
iolation, the key idea consists in keeping isolated the data from
he cloned data w.r.t. the constraints. For instance, consider the
ollowing EGD:

(x, y), p(y, z) → y = z

e know that, by precondition, when just considering the con-
tants from the original database D, the EGD is satisfied. Further-
ore, when just considering the labelled nulls from the cloned
ata D′, the EGD is still satisfied. However, when merging some
abelled null with some constant, we might violate the constraint.
.g., consider that D = {p(1, 2)}, which satisfies the constraint,
ogether the cloned data D′

= {p(#1,#2)}, which also satis-
ies the constraint. Note that, if merging #1 into 1, we would
et a violation with the values p(1, 2), p(1,#2) since we have
ot equated #2 with 2. Naturally, we could repair the EGD by
eans of equating them, but this way to repair, if carried without
ontrol, might end up equating the whole set of labelled nulls
ith their corresponding original constants, thus, eliminating all
he generated clones. For this reason, we advocate not to repair
onstraints on the unmergeable computation step (which is a
rocess carried on the cloning step), but to avoid the violation
nstead. For a similar reason, we should avoid violating TGDs and
EDs.
To avoid such violations, the idea is to not merge a labelled

ull that might be used in a join. Hence, in our previous ex-
mple, we would generate the following unmergeable TGD rule:
(x, y), clone(x, x′), p(x′, z ′) → unmergeable(x′). More in general,
or each EGD, TGD, or DED c we must proceed as follows: for
ach pair of atoms p(xp) and q(xq) from LHS(c), which have some
ariables in common xc ⊂ xp ∩ xq (with xc ̸= ∅), we must create

the following DEDs:

p(xp), cloneAll(xc , xc ′), q(x′
q) → unmergeable(x′

1) ∨ ... ∨ unmergeable(x′

n)

q(xq), cloneAll(xc , xc ′), p(x′
p) → unmergeable(x′

1) ∨ ... ∨ unmergeable(x′

n)

where x′

i ∈ xc ′.
In our running example, the maximum cardinality constraint

tating that one group can only have one owner (which is en-
oded with the following EGD: Group(g, o),Group(g, o2) → o =

2) brings the unmergeable TGD: Group(g, o), clone(g, g ′),
roup(g ′, o2) → unmergeable(g ′) meaning that we cannot merge

groups since this might make a group to have two owners, and
hence, violate the maximum cardinality constraint.
 (

184
3.2.3. Justification of correctness
This step does not compute any fact that might violate any

constraint. Indeed, we only compute unmergeable labelled nulls.
Also, this step terminates, since the number of labelled nulls that
might be indicated to be unmergeable is finite.

3.3. Merging

The merging process is based on, by means of EGDs, equating
some labelled nulls into their original constants. In this way, the
cloned data joins the original data. In order to ensure that no
merge violates any constraint, we only merge those clones which
are not unmergeable. Hence, as a result, we obtain a new bigger
database, satisfying the clones requested by the user, where the
original data joins with the cloned data, but in such a way that
all constraints are satisfied.

Formally, the merge process contains one unique EGD rule:

clone(x, x′), not(unmergeable(x′)) → x = x′

Note that, in this case, in the LHS of the rule, we have a negated
atom. Hence, we need a chase capable of dealing with basic
negation, and apply the chase in a stratified manner (i.e., we
cannot start chasing those rules that depends on the absence of
some atom a, until all the dependencies that might generate a
instances have been executed). It is not difficult to see that our
approach is already well-stratified if applying the chase in the
order we have presented the paper: first the rules for computing
clones, then the rules for computing unmergeables, and finally
the rules for computing merges.

3.3.1. Justification of correctness
Intuitively, during the process of merging, the homomorphism

between the clones and the original data is preserved. Then, since
no constraint is violated in the original database, no constraint
can be violated with the cloned data. Furthermore, since the
labelled nulls never joins the constraints in the joins relevant for
the constraints, no constraint is violated in the union of the data
with the cloned data. Formally:

Theorem 3. Let mergingEGDs(C) be the set of merging EGDs from
an original set of constraints C. Given a cloned database D′ from D,
and a set of constraints C s.t. D |H C, we have: after chasing the
original database D with mergingEGDs(C) and D′, we obtain a new
database Dm s.t. Dm

|H C.

Proof. Since D′ is a clone from D, there is an homomorphism
original from D′ into D. Furthermore, it is easy to see that the
homorphism is preserved during the merge. As a result, there
is an homomorphism between Dm and D. Making an abuse of
otation, we might still call it original (indeed, its just the same
omomorphism but projecting the labelled nulls that disappear
rom Dm).

Similarly to Theorem 1, no denial is violated in Dm because of
he homomorphism to D, which is consistent. We lack proving
hat no TGD/DED/EGD is violated. We prove that no TGD is
iolated since the other cases follows analogously. The proof is
ased on contradiction. Assume that there is some TGD c ∈ C that
s violated in Dm. Consider the substitution σ for the variables in
HS(c) that witnesses such violation. There are two cases: c has
nly one literal on its LHS, or it has many.
When there is one literal, we know Dm

|H LHS(cσ). Because
f the homomorphism, there is also some σo s.t. D |H LHS(cσ).
ence, there is a repair for such violation in D. Such repair
ppears, by construction, in D′. Since there is an homomorphism
rom D′ into Dm, such repair also appears in Dm. Hence, Dm

|H c

contradiction).

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

o
c
w
m
h
a
n
q
H

When there are more literals, clearly σ cannot be composed
nly of constants (since it would show a violation in D, which is
onsistent), nor can be only composed of labelled nulls (since it
ould point a violation in D′, which is also consistent). Hence, it
ust mix constraints and labelled nulls. Since, by assumption, c
as no cartesian product, pick any two literals p and q that have
join on the variables xc where pσ does not contain any labelled
ull, and qσ contains some labelled null. It is clear that pσ and
σ share the same values for xc (i.e., those established in σ).
owever, by construction, for some xi ∈ xc , their values cannot

be the same (they could not be merged)(contradiction). □

4. Chase characteristics

In this section, we go deeper into analysing the chase algo-
rithm that we can use to run our approach. As previously said,
we require our chase-algorithm to be complete in order to ensure
that we always find a solution. On the following, we argue that
our approach can be parallelized (running several chase instances
at the same time), and that it can run non-deterministically,
which is a property that can be interesting for generating random
test data. Interestingly, our approach can run each clone request
isolatedly. That is, if we have 10 clone requests, we can run each
clone request in a different chase instance, with the same original
database, and finally, merge all the results in a single output
database. The rationale behind this is that each clone requests
generates a group of clones (of the original database) that is
independant with regards to the clones generated by the other
clone requests.

In practice, this means that (1) our proposal can run in linear
time w.r.t. number of clone requests, and (2) our proposal can
be easily parallelized. Indeed, the complexity of running a single
clone request is determined by the original database schema
and database size, which are fixed parameters, hence, having a
constant execution time k. Therefore, running x clone requests is
expected to take x ∗ k time. With regards to the parallelization,
since each clone requests is independant from the others, they
can be run in parallel, provided that each parallel execution uses
a different (infinite) set of labelled nulls to avoid a non-intended
clash of nulls. Formally, the following theorems state that our
approach is sound and complete when run in parallel.

Theorem 4 (Soundness). Given some constraints C, a database D
s.t. D |H C, and two databases D1 and D2 obtained by means our
approach over some clone requests Req1 and Req2 (respectively),
using two different sets of labelled nulls, the union D1 ∪ D2 is
consistent (D1 ∪ D2 |H C) and satisfies the requests Req1 ∪ Req2.

Proof. We need to proof two things: (1) D1 ∪ D2 satisfies the
request. (2) D1 ∪ D2 is consistent. We do so separately. D1 ∪ D2
satisfies the request because, indeed, to satisfy the request, we
only need to contain the requested clone. Since D1∪D2 subsumes
both D1 and D2, and each Di contains the request Reqi, then, D1 ∪

D2 satisfies the request also. To see that D1 ∪ D2 is consistent, it
is enough to realize that there is an homomorphism from D1 ∪D2
into D. Indeed, by construction there is an homomorphism h1
from D1 into D, and another homomorphism h2 from D2 into D.
Then, h1 ∪ h2 is an homomorphism from D1 ∪D2 into D thanks to
the fact that D1 and D2 do not have any labelled null in common.
Once the homomorphism is established, the proof continues in a
similar fashion as the consistency proof from Theorem 1. □

Theorem 5 (Completeness). Given some constraints C, a database
D s.t. D |H C, and a clone request Req = Req1 ∪ Req2 (with
Reqi ̸= ∅), we can run our approach in parallel, using two different
sets of labelled nulls, obtaining two databases D and D s.t. the
1 2

185
union D1 ∪D2 is consistent (D1 ∪D2 |H C) and satisfies the requests
Req1 ∪ Req2.

Proof. By precondition, it is always possible to partition the
request Req into two different sets Req1 and Req2. Running our
approach in parallel, in each Reqi, will bring a solution, for sure,
since our approach always finds a solution (provided that the
chase is complete). By Theorem 1, we know that the union of both
solutions is a solution for Req1 ∪ Req2. □

As a consequence, we have that our approach runs in linear
time:

Theorem 6. Given some constraints C, a database D s.t. D |H C,
and a clone request Req, we can run our approach in linear time wrt
the size of Req.

Proof. By Theorems 4 and 5 we can reduce the problem of
running our approach over Req into running |Req| times our
approach. In each time, the size of the problem is fixed: indeed,
the size of the schema is fixed, the size of the original database D
is fixed, and the clone request is fixed to one. Hence, for each of
these executions, our approach might take a constant amount of
time k. Hence, our approach, after running all the |Req| executions
will take |Req| ∗ k time. □

Furthermore, from here it is easy to see that the output of the
approach is also linear:

Theorem 7. Given some constraints C, a database D s.t. D |H C,
and a clone request Req, the output of our approach is linear w.r.t.
the size of Req.

Proof. The lower bound is given by the fact that each request
encompasses its own clone, and the upper bound is given by the
fact that the approach runs in linear time. □

We suggest to use a non-deterministic chase. That is, typically,
when a chase execution finds a DED, it first explores if there
is a solution in the first disjunction (generating a chase-branch)
and, afterwards, if it does not find any, explores the next dis-
junction (generating a new chase-branch). In our approach, each
chase-branch always has a solution, that is, our chase will never
backtrack. Thus, it is better if the chase randomly selects the DED
disjunction to apply. In this way, the resulting database will be
more random, which is a desirable property for testing. Formally:

Theorem 8. Any chase-branch of our approach always yields a
solution.

Proof. It has been already shown that our approach always finds
a solution (provided that the chase is complete), we know show
that such solution can be found in any chase-branch. In the first
and third steps, cloning merging, there is only one chase-branch
(since there are no DEDs), hence, there is always a solution. In
the second step, computing unmergeables, there are only TGDs
and DEDs (no EGDs nor denials involved). However, each TGD
and DED has, on the RHS, unmergeable atoms which do not
appear in the LHS of any other rule. Hence, clearly, executing such
TGDs/EGDs will eventually terminate (there will be no infinite
solution), and no branch will be ever cut (there is no denial nor
EGD that can cut the chase-branch). □

As a final comment, we also argue that the merging rule,
from the merging final stage, could be only applied with some
probability. Indeed, if we always merge all the possible clones,
we might end-up with the smallest database satisfying the clone
requests and the constraints. This might not be desirable for

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

t
H
d
m

5

a
O
c
s
t
i
r
o
f
T
c
t
o
w
c

5

E
i
t
o
T
c
a
w
t
o
b
t
t
m
p
p

M
g
c

esting purposes, where more random casuistics are required.
ence, we argue that this final step should be applied in a non-
eterministic manner. Alternatively, we can also add, at random,
ore unmergeable facts to obtain the same behaviour.

. Experiments

In this section, we evaluate the practical applicability of our
pproach. To that end, we conduct two independent experiments.
n the one hand, the objective of the first experiment is to
ompare our method against a baseline solution and show its
uperiority, by evaluating the evolution of the response time. To
hat end, we perform the evaluation using the running example
ntroduced earlier, which serves as representative scenario of a
eal-world application. Then, on the other hand, the objective
f the second experiment is to scrutinize in detail how the dif-
erent parameters of our cloning method affect its performance.
hus, here we assess the performance on a larger variety of
ases, including corner cases which are rarely found in prac-
ice. To achieve that we generate synthetic schemata and sets
f constraints using a state-of-the-art graph instance and query
orkload generator. All details and reproducibility instructions
an be found in [17].

.1. Comparison against a baseline

xperimental setting. As previously discussed, there does not ex-
st in the literature a solution for large-scale test data generation
hat considers general business rules. Hence, we here compare
ur method against SVTe [18], a baseline SAT solver solution.
his is a tool that, if a database schema is correct (i.e., with no
ontradictions), generates a minimum set of instances satisfying
ll constraints. As input database schema and set of business rules
e use the running example introduced in Fig. 1. To compare
he methods, we systematically generate an increasing amount
f instances of each class. Note that, due to the presence of
usiness rules and cardinality constraints present in the schema,
he generation of an instance of a particular class will trigger
he generation of instances of other classes (e.g., to generate a
essage, the tool must generate a conversation in which it takes
lace, and also a user, which must belong to the conversation, to
lay the role of message sender).
For each class and number of instances (N), we evaluate our

approach and measure the execution time in seconds (T). To
account for variability, we evaluate the methods under the same
conditions three times and consider the median values. Experi-
ments were performed on a single-threaded Java program run-
ning on Windows 10 machine with an Intel(R) Core(TM) i7-
10700K processor and with 16 GB of RAM.

Experimental results. In Fig. 4, we present the runtime perfor-
mance comparison of the baseline solution and our method. To
ease the interpretation of results, the curves generated by the col-
lected data points have been smoothed by natural cubic splines.
In general, we can clearly observe that the baseline method is
limited by its NP-hard complexity, which causes the runtime
to exponentially explode even for a low number of instances
to be generated. Oppositely, the trend presented by our cloning
approach is clearly linear, as theoretically proven in Section 4.
Such differences are most present for those classes that are af-
fected by a higher number of business rules (e.g., Message and
ember), as the number of backtracking steps in the SAT solver
rows exponentially. Oppositely, for those classes that are neither
overed by business rules nor cardinality constraints (e.g., User)
our approach and the baseline solution perform likewise, both in
the range of subseconds.
186
Table 1
Average values of minimum cardinality constraints, maximum cardinality
constraints and business rules for an increasing number of classes.
Classes Min. card. Max. card. Business rules

10 1.69 1.60 1.23
20 5.02 5.33 3.29
30 7.63 7.53 4.82
40 11.65 12.55 6.76

Table 2
Summary of variables and measures used to scrutinize our method.
Variables
S Number of tables in the schema
Pc Probability to a select a cardinality constraint
Pm Probability of merging
N Number of instances to clone

Measures
R Number of restrictions in the schema
Cpre Number of cloned instances before merging
Cpost Number of cloned instances after merging
T Execution time in seconds

5.2. Scrutinizing our method

Experimental setting. To systematically assess our approach, we
generate artificial scenarios adhering to certain restrictions. To
that end, we used gMark [19], a graph instance and workload
generator, whose output we interpreted as database schemas.
Precisely, for an increasingly varying number of nodes, we gener-
ated graphs following a Gaussian distribution (µ = 3 and σ = 1)
consisting of two kinds of nodes (i.e., classes and attributes) and
two kinds of edges (i.e., attribute membership into a class, and
references between attributes of different classes). Such graph is
translated to an equivalent relational schema where we consider
one-to-one and one-to-many cardinalities. For business rules, we
consider all possible non-overlapping cyclic subgraphs, which
allow to express NOT EXISTS constraints such as those presented
in the running example in Fig. 1. Table 1, depicts the statistics in
terms of average values for minimum and maximum cardinality
constraints, as well as for business rules, on synthetically gen-
erated schemata with a number of classes in the range 10..40.
Finally, in order to materialize instances in the artificial schema
that adheres to all constraints, we, again, use SVTe. Here, SVTe
is used to generate the minimal set of instances that satisfy all
constraints and serve as seed for the cloning phase.

We consider each scenario to consist of a relational schema, a
set of cardinality constraints and business rules, and a minimum
set of instances that satisfy all constraints. With such structure,
we evaluate our cloning and merging approach. Hence, to eval-
uate our approach under different situations, we customize the
generation of artificial scenarios using the following variables:
(1) the number of tables in the resulting schema (S); (2) the
probability to select each cardinality constraint (Pc); (3) the prob-
ability for a cloned instance (and candidate to be merged) to be
actually merged (Pm); and (4) the number of instances to clone
in a single execution (N). For each combination of variables, we
evaluate our approach and measure the number of restrictions in
the schema (R), the number of cloned instances before merging
(Cpre) and after merging (Cpost), and the execution time in seconds
(T). Table 2, provides an overview of the experimental variables
and measures. To account for variability, we also generate three
scenarios under the same conditions and consider the median
values in order to dismiss the presence of outliers among different
executions.

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

c
w
o
A
(
t
o
h
r
t

E
w
t
v
t
(
t
c
p
i

I
w
s
g
m
a

Fig. 4. Evolution of T (y-axis) w.r.t. N (x-axis) and class.
p
a

Fig. 5. Correlation matrix for experimental variables. Darker denotes higher
values.

Correlation among measured variables. We, first, analyse how
orrelated are the measured variables, which serve as indicator on
hich ones to put the focus of analysis and provide information
n what variables have the highest impact on the measurements.
s depicted in Fig. 5, both measures for number of instances
pre and post merge) are highly correlated with the execution
ime of the algorithm. Hence, it is only necessary to report one
f them. We, additionally, see that the number of restrictions is
ighly correlated with the execution time. This is an expected
esult, given that data maintenance is considerably harder when
he number of constraints grows.

volution of execution time. We, next, analyse how T evolves
ith increasing the size of the schema and cloned instances. To
hat end, we plot in a logarithmic scale, its evolution for different
alues of N and S. As depicted in Fig. 6, we can conclude that
he execution time is increasingly complex for larger schemata
which also entails more restrictions and more complexity). Yet,
he complexity of cloning linearly grows with the number of
loned instances. This result has been obtained executing the
ipeline on a single-thread program. Thus, this results could be
mproved by parallelizing the process.

mpact of schema and constraints. Finally, here, we analyse
hat is the impact of the size of the schema S and number of con-
traints over the time T . Recall that, as previously described, for a
iven schema size we generate all possible minimum and maxi-
um cardinality constraints, as well as business rules, expressed
s cyclic subgraphs. Thus, it suffices to studying the evolution
187
of T on a range of values of S to also determine the impact of
constraints. Fig. 7, depicts in a logarithmic scale the evolution
of T for different values of S and N . Note this is an alternative
erspective of the results presented in Fig. 6, here swapping S
nd N . As we earlier determined, the probability of merging Pm

has no impact on the response time, thus in Fig. 7 we use a
constant value of Pm = 20%. We can conclude that, oppositely as
earlier where we showed the linear scalability of our approach
over an increasing number of cloned instances, growing the size
of the schema and constraints has an exponential blowup on
the response time. This result is just a natural consequence of
the exponential gap between data complexity (the complexity
of dealing with constraints, increasing the data), and expressive
complexity (the complexity of dealing with constraints, when in-
creasing the constraints), where the expressive complexity tends
to be exponentially bigger than the data complexity [20].

6. Related work

We review related work regarding relational data generators,
automated reasoners, chase implementations and other test data
generators.

Relational data generators. Generating relational test data con-
sidering constraints have been done before using randomized or
guided search techniques. For instance, Bruno and Chaudhuri [21]
propose a Data Generation Language (DGL), a language that helps
the user create relational data through its built-in operations. This
approach is good for creating test data satisfying some particular
statistical distributions, but the satisfaction of the constraints
relies on the capability of the user to build a program in DGL
that satisfies them. In contrast, Houkjaer et al. [22] made a more
automatic approach where the user can generate test data by
specifying properties, such as data distributions and association
cardinalities, rather than implementing functions. This approach
can deal with primary key, foreign key and check constraints,
but cannot deal with more generic constraints as we do. A more
generic approach can be found in [23], which is based on writing
all constraints as cardinality constraints and apply a linear pro-
gramming technique. However, the optimizations they apply to
make feasible the data generations comes at the cost of introduc-
ing some errors, i.e., they do not guarantee the satisfaction of all
the constraints for all the data.

Automated reasoners. The problem of generating test data sat-
isfying constraint can be solved through automated reasoners.

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

A
b
E
t
w
H
a
d
s
h
e

C

Fig. 6. Evolution of T (y-axis) w.r.t. N (x-axis) and S (legend).
Fig. 7. Evolution of T (y-axis) w.r.t. S (x-axis) and N (legend).

utomated reasoners are first-order model finders capable of
uilding a finite database satisfying all the given constraints.
xamples of automated reasoners are [9–11,24]. The most impor-
ant point of such reasoners is that they are capable of dealing
ith more expressive constraints than we do in our approach.
owever, the counterpart they have is that their execution times
re much higher. Thus, it is almost impossible to generate test
ata with a hundred instances, as we do. Some automated rea-
oners try to combine automated reasoning with heuristics [25],
owever, we still argue that they still have the trade-off between
fficiency versus completeness.

hase implementations. It can be argued that, since our ap-
proach defines the constraints under the form of TGD/DEDs/EGDs
and denials, a normal chase, such as [26,27], can be used to
generate such test data. However, we argue that our approach is
faster. Indeed, in our case, our chase never performs backtracking,
whereas a typical chase implementation, under the presence of
DEDs and denials, must create several chase-branches, cut the
branches according to the denials, and perform, in essence, a
blind search. We avoid the blind search by means of repairing the
constraints in the way the original database did, thus, ensuring
that we always know where the solution exists.

Other test data generators. The authors of [12] presented a
method for generating test data with the aim to check the correct-
ness of the SQL schema defined, and in particular, with regards
to the constraints defined. In contraposition to our work, this
approach can only deal with typical SQL constraints (not null,
unique, primary key, foreign key constraints, etc.) and is not
though for generating data of a predefined size, as we do in our
approach. Similarly, the authors of [13] presented an approach
188
for, given a SQL query, generating some test data for it. Their idea
focuses on generating test data that is relevant for the fixed query,
and its method is based, on its core, in the Alloy reasoner [10].
Our approach can be seen as a complement for theirs. Indeed, we
are able to pick their initial test data generated, and create bigger
databases satisfying their constraints. The very same authors
extended this work to make the computation incremental [28],
however, the core is still based on a blind search algorithm
(CSP), which we argue might not be efficient enough. To avoid
such blind searches, the work presented in [29] advocates to
use guided searches such as genetic algorithms. The problem we
argue that exists in such approach is that this kind of searches are
not complete, hence, they might fail to find a database satisfying
all the constraints when it really exists. In contrast, our approach
guarantees to always be able to create a new bigger database
state. There are also other data generators that, however, only
works with a fixed schema. This is the case, for instance, of the
LUBM benchmark or the Berlin SPARQL benchmark [30,31], which
have an ad-hoc implementation to build some data that satisfies
their constraints. We argue that our approach might also be used
for generating benchmarking data with the advantage of being
capable of dealing with any relational schema, limited to the
constraints we can deal with, instead of a fixed one.

7. Conclusions and further work

We have proposed an approach to generate a large set of rep-
resentative data for a database schema which satisfies also a set
of business rules of the application domain. Our approach builds
upon a simple sample database instance that can be generated
with automated reasoners and then clones it until a large and
representative set of data has been generated. Our approach is
independant of the particular language chosen, provided that it is
first-order, which makes it suitable for business rules specified in
OWL, Datalog, SQL, or specification languages such as UML/OCL.
We have shown that our approach can be run with the traditional
chase procedure, proved its correctness, and even shown that
it has linear time complexity w.r.t. the desired size of the final
database. As further work, we would like to investigate how to
permit even more merges in our approach, and deal with even
more expressive business rules.

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

C

o

,

RediT authorship contribution statement

Xavier Oriol: Conceptualization, Formal analysis, Writing –
riginal draft, Writing - review & editing. Ernest Teniente: Super-

vision, Writing – original draft, Writing – review & editing. Marc
Maynou: Software, Validation, Investigation, Writing – original
draft. Sergi Nadal: Validation, Investigation, Writing – original
draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

All the details and reproducibility instructions for the experi-
ments can be found in the companion website https://mydisk.cs.
upcedu/s/E8dxK6X9kWam3nN

Acknowledgements

This work is partially supported by the SUDOQU project,
PID2021-126436OB-C21 fromMCIN/AEI, 10.13039/501100011033
FEDER, UE and by the Generalitat de Catalunya, Spain (under
2017-SGR-1749); Sergi Nadal is partly supported by the Spanish
Ministerio de Ciencia e Innovación, as well as the European Union
- NextGenerationEU, under project FJC2020-045809-I.

Appendix A. The magento use case

In this appendix, we showcase the applicability of our cloning
approach on a different use case presented in Fig. 1. Next, we also
extend our experimental evaluation to asses the performance of
our method in this new use case. We consider the domain of e-
Commerce platforms, and choose Magento2 as one of its major
representative platforms. The schema of Magento is divided in
two (sub)schemata, the structural and the behavioural ones. The
former, contains the static knowledge, such as master data, while
the latter contains the features the system offers to its users
modelled per kind of use case. All code for this scenario can be
found in [32].

A.1. Schema and constraints

For the sake of simplicity, in this appendix, we focus on the
Locations fragment of the schema as described in [33]. Such frag-
ment contains information about a customer Address as depicted
in Fig. A.8. Shortly, the Locations hierarchy specifies PostalAreas,
which identify that geographical zone sharing a postal code. Then,
a Municipality is an administrative entity which denotes cities,
towns or villages. Finally, a Zone is a state or a province in a Coun-
try. Such schema contains also several constraints, we consider
the following business rules: (1) ZonesInAddressesSameCountry,
stating that if the address country has zones, the address is
also associated to a zone of this country; (2) PostalCodeInAddress,
stating that if the country where an address is located forces to
specify a postal area, the address is associated to one postal area;
and (3) PostalAreaBelongsToMunicipality, stating that the postal
area of an address belongs to the municipality of that address.
These rules are expressed as SQL assertions in Fig. A.8. Such
schema can be translated to the set of relations depicted in Listing
1, which are expressed in Datalog notation.

2 https://about.magento.com/
189
Fig. A.8. Application schema for Locations in Magento with constraints and
business rules expressed as SQL assertions.

Country(Name, PostalCodeIsMandatory)
Municipality(Name, Country)
Zone(Name, Country)
PostalArea(PostalCode , Municipality , Country)
Address(oID, FirstName , MiddleName , LastName,

NamePrefix , NameSuffix , Company, StreetAddress ,
Telephone , Fax, Country, Municipality)

MunHasZone(Municipality , Country, Zone)
HasZone(Address, Zone, Country)
HasPostalArea(Address, PostalCode , Country)

Listing 1: Translation of the Magento UML schema to database
relations

A.2. A cloning execution

Let us now consider the execution of our cloning pipeline. To
that end, we consider the set of database instances depicted in
Listing 2 as minimal set of instances to start the cloning process.
This is a consistent set of instances with respect to the schema
constraints. Note we use the term ._ to denote labelled nulls of
attributes that are not part of any primary key or foreign key.

https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upcedu/s/E8dxK6X9kWam3nN
https://about.magento.com/

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191

c
i
c

t
S
i
p
t

Country(c1,true)
Country(c2,false)
Country(c3,true)
Zone(z1,c1)
Zone(z2,c2)
Zone(z3,c2)
Zone(z4,c3)
Zone(z5,c3)
Municipality(m1,c1)
Municipality(m2,c1)
Municipality(m3,c2)
Municipality(m4,c3)
Municipality(m5,c3)
PostalArea(pa1,m1,c1)
PostalArea(pa2,m2,c1)
PostalArea(pa3,m4,c3)
Address(a1,._,._,._,._,._,._,._,._,._,c1,m1)
Address(a2,._,._,._,._,._,._,._,._,._,c2,m3)
Address(a3,._,._,._,._,._,._,._,._,._,c3,m5)
HasZone(a1,z1,c1)
HasZone(a2,z2,c2)
HasZone(a3,z4,c3)
HasPostalArea(a1,pa1,c1)
HasPostalArea(a2,pa2,c1)
MunHasZone(m1,c1,z1)
MunHasZone(m3,c2,z3)

Listing 2: Minimal database for the Magento use case

Then, from the set of instances in Listing 2, after executing our
loning pipeline we have the additional set of instances depicted
n Listing 3. As it can be easily observed, these instances are also
onsistent with respect to the schema constraints.

Country(c4,true)
Country(c5,false)
Country(c6,true)
Zone(z6,c4)
Zone(z7,c5)
Municipality(m6,c4)
Municipality(m7,c4)
Municipality(m8,c5)
Municipality(m9,c5)
Municipality(m10,c6)
PostalArea(pa4,m7,c4)
PostalArea(pa5,m9,c5)
PostalArea(pa6,m10,c6)
Address(a4,._,._,._,._,._,._,._,._,._,c4,m7)
Address(a5,._,._,._,._,._,._,._,._,._,c5,m8)
Address(a6,._,._,._,._,._,._,._,._,._,c5,m9)
Address(a7,._,._,._,._,._,._,._,._,._,c6,m10)
HasZone(a5,z7,c5)
HasPostalArea(a4,pa4,c4)
HasPostalArea(a6,pa5,c5)
HasPostalArea(a7,pa6,c6)
MunHasZone(m6,c4,z6)

Listing 3: Cloning results from the minimal database

A.3. Evaluation on the magento use case

Here, we provide a systematic evaluation of our approach on
he Magento use case. Following the same approach presented in
ection 5.1, we use SVTe to generate a minimal set of database
nstances that satisfies all schema constraints and assess the
erformance of our cloning method. For each class, we evaluate
he time (in seconds) to clone N instances from 50 to 1000 using
a merge probability of 30%. As depicted in Fig. A.9, which shows
the evolution of response time to clone, in such scenario our
approach follows the same trend as in the previously presented

experimental results showing a clear linear scalability.

190
Fig. A.9. Evolution of the response time to clone (y-axis) w.r.t. the number of
instances (x-axis) and class.

References

[1] G.J. Myers, The Art of Software Testing, second ed., Wiley, 2004.
[2] J. Edvardsson, A survey on automatic test data generation, in: Proceedings

of the 2nd Conference on Computer Science and Engineering, Citeseer,
1999, pp. 21–28.

[3] A. Poggi, D. Lembo, D. Calvanese, G.D. Giacomo, M. Lenzerini, R. Rosati,
Linking data to ontologies, in: Journal on Data Semantics X, Springer, 2008,
pp. 133–173.

[4] OMG, Unified modeling language (UML) superstructure, version 2.0, 2005.
[5] The SQL 92 Standard, ANSI Standard, 1992.
[6] SQL assertions - declarative multirow constraints, 2022, https:

//community.oracle.com/tech/apps-infra/discussion/4390732/sql-
assertions-declarative-multi-row-constraints. (Accessed 08 December
2022).

[7] SQL assertion statement, 2022, https://stackoverflow.com/questions/
45564667/sql-assertion-statement. (Accessed 08 December 2022).

[8] OCL-repository, 2022, https://github.com/jcabot/ocl-repository. (Accessed
08 December 2022).

[9] J. Cabot, R. Clarisó, D. Riera, UMLtoCSP: a tool for the formal verification
of UML/OCL models using constraint programming, in: Proceedings of the
Twenty-Second IEEE/ACM International Conference on Automated Software
Engineering, 2007, pp. 547–548.

[10] E. Torlak, D. Jackson, Kodkod: A relational model finder, in: International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2007, pp. 632–647.

[11] G. Rull, C. Farré, A. Queralt, E. Teniente, T. Urpí, AuRUS: explaining the
validation of UML/OCL conceptual schemas, Softw. Syst. Model. 14 (2)
(2015) 953–980.

[12] P. Mcminn, C.J. Wright, G.M. Kapfhammer, The effectiveness of test cov-
erage criteria for relational database schema integrity constraints, ACM
Trans. Softw. Eng. Methodol. (TOSEM) 25 (1) (2015) 1–49.

[13] C. De La Riva, M.J. Suárez-Cabal, J. Tuya, Constraint-based test database
generation for SQL queries, in: Proceedings of the 5th Workshop on
Automation of Software Test, 2010, pp. 67–74.

[14] X. Oriol, E. Teniente, G. Rull, TINTIN: a tool for incremental integrity check-
ing of assertions in SQL server, in: Advances in Database Technology-EDBT
2016, 19th International Conference on Extending Database Technology,
Bordeaux, France, March 15-16, Proceedings, 2016, pp. 632–635.

[15] X. Oriol, E. Teniente, A. Tort, Computing repairs for constraint violations
in UML/OCL conceptual schemas, Data Knowl. Eng. 99 (2015) 39–58.

[16] A. Deutsch, A. Nash, J. Remmel, The chase revisited, in: Proceedings of the
Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, 2008, pp. 149–158.

[17] Reproducibility of cloning experiments, 2022, https://mydisk.cs.upc.edu/s/
E8dxK6X9kWam3nN. (Accessed 14 December 2022).

[18] C. Farré, G. Rull, E. Teniente, T. Urpí, SVTe: a tool to validate database
schemas giving explanations, in: DBTest, ACM, 2008, p. 9.

http://refhub.elsevier.com/S0167-739X(23)00061-4/sb1
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb2
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb3
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb4
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb5
https://community.oracle.com/tech/apps-infra/discussion/4390732/sql-assertions-declarative-multi-row-constraints
https://community.oracle.com/tech/apps-infra/discussion/4390732/sql-assertions-declarative-multi-row-constraints
https://community.oracle.com/tech/apps-infra/discussion/4390732/sql-assertions-declarative-multi-row-constraints
https://community.oracle.com/tech/apps-infra/discussion/4390732/sql-assertions-declarative-multi-row-constraints
https://community.oracle.com/tech/apps-infra/discussion/4390732/sql-assertions-declarative-multi-row-constraints
https://stackoverflow.com/questions/45564667/sql-assertion-statement
https://stackoverflow.com/questions/45564667/sql-assertion-statement
https://stackoverflow.com/questions/45564667/sql-assertion-statement
https://github.com/jcabot/ocl-repository
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb9
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb10
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb11
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb12
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb13
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb14
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb15
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb16
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb16
https://mydisk.cs.upc.edu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upc.edu/s/E8dxK6X9kWam3nN
https://mydisk.cs.upc.edu/s/E8dxK6X9kWam3nN
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb18
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb18
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb18

X. Oriol, E. Teniente, M. Maynou et al. Future Generation Computer Systems 144 (2023) 179–191
[19] G. Bagan, A. Bonifati, R. Ciucanu, G.H.L. Fletcher, A. Lemay, N. Advokaat,
gMark: Schema-driven generation of graphs and queries, IEEE Trans.
Knowl. Data Eng. 29 (4) (2017) 856–869.

[20] M.Y. Vardi, The complexity of relational query languages, in: Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing, 1982,
pp. 137–146.

[21] N. Bruno, S. Chaudhuri, Flexible database generators, in: Proceedings of
the 31st International Conference on Very Large Data Bases, 2005, pp.
1097–1107.

[22] K. Houkjær, K. Torp, R. Wind, Simple and realistic data generation, in:
Proceedings of the 32nd International Conference on Very Large Data
Bases, 2006, pp. 1243–1246.

[23] A. Arasu, R. Kaushik, J. Li, Data generation using declarative constraints,
in: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, 2011, pp. 685–696.

[24] M. Kuhlmann, L. Hamann, M. Gogolla, Extensive validation of OCL models
by integrating SAT solving into USE, in: International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation,
Springer, 2011, pp. 290–306.

[25] G. Soltana, M. Sabetzadeh, L.C. Briand, Practical constraint solving for
generating system test data, ACM Trans. Softw. Eng. Methodol. (TOSEM)
29 (2) (2020) 1–48.

[26] F. Geerts, G. Mecca, P. Papotti, D. Santoro, Cleaning data with llunatic,
VLDB J. (2019) 1–26.

[27] A. Bonifati, I. Ileana, M. Linardi, ChaseFUN: a data exchange engine for
functional dependencies at scale, in: EDBT, 2017, pp. 534–537.

[28] M.J. Suárez-Cabal, C. de la Riva, J. Tuya, R. Blanco, Incremental test
data generation for database queries, Autom. Softw. Eng. 24 (4) (2017)
719–755.

[29] J. Castelein, M. Aniche, M. Soltani, A. Panichella, A. van Deursen,
Search-based test data generation for SQL queries, in: Proceedings
of the 40th International Conference on Software Engineering, 2018
pp. 1220–1230.

[30] Y. Guo, Z. Pan, J. Heflin, LUBM: A benchmark for OWL knowledge base
systems, J. Web Semant. 3 (2–3) (2005) 158–182.

[31] C. Bizer, A. Schultz, The berlin sparql benchmark, Int. J. Semant. Web
Inform. Syst. (IJSWIS) 5 (2) (2009) 1–24.

[32] Appendix scenario, 2022, https://mydisk.cs.upc.edu/s/XpXyyy7tAy2TK2r.
(Accessed 14 December 2022).

[33] A. Ramirez Papell, Esquema Conceptual De Magento, Un Sistema De
Comerç Electrònic, Universitat Politècnica de Catalunya, 2011.
191
Xavier Oriol received the Ph.D. in Computer Science in
2017 from Universitat Politècnica de Catalunya (UPC)
with International mention (Cum Laude). He is a re-
searcher and project leader at inLab FIB, and teaches
software engineering courses in the same faculty. His
research interests include incremental integrity check-
ing, semantics, and automated reasoning on conceptual
schemas.

Ernest Teniente (Ph.D., UPC) is a full professor at
the Department of Service and Information System
Engineering at the Universitat Politècnica de Catalunya
– BarcelonaTech. Current director of the inLab FIB. He
has also been a visiting researcher at the Politecnico di
Milano and at the Universita’ di Roma Tre, in Italy. He
has been active in the fields of software engineering
and databases for the past 20 years. He conducts
research on conceptual modelling, automated reasoning
on conceptual schemas, database updating problems
and data integration.

Marc Maynou received his B.E. degree in computer
science from the Technical University of Catalonia in
2021. He is currently pursuing the M.S. degree in data
science in the same university whilst also working as
a software engineer and research assistant at the DTIM
research group.

Sergi Nadal received the PhD in Computer Science in
2019 from Universitat Politècnica de Catalunya (UPC)
and Université Libre de Bruxelles (ULB). He is a Juan de
la Cierva Formación postdoctoral fellow and teaching
assistant in the Database Technologies and Information
Management (DTIM) group in UPC. His research inter-
ests lie on systems aspects of data and information
management.

http://refhub.elsevier.com/S0167-739X(23)00061-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb19
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb20
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb21
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb22
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb23
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb24
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb25
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb26
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb27
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb28
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb29
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb30
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb31
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb31
https://mydisk.cs.upc.edu/s/XpXyyy7tAy2TK2r
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb33
http://refhub.elsevier.com/S0167-739X(23)00061-4/sb33

	Generating valid test data through data cloning
	Introduction
	Preliminaries
	Our Approach
	Cloning
	Cloning user request
	Cloning repairs
	Justification of the correctness

	Computing unmergeable nulls
	Unmergeable because of a request
	Unmergeable because of a constraint violation
	Justification of correctness

	Merging
	Justification of correctness

	Chase Characteristics
	Experiments
	Comparison against a baseline
	Scrutinizing our method

	Related Work
	Conclusions and further work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A. The Magento Use Case
	Schema and constraints
	A cloning execution
	Evaluation on the Magento use case

	References

