JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Graph-driven Federated Data Management

Sergi Nadal, Alberto Abell6, Oscar Romero, Stijn Vansummeren, Panos Vassiliadis, Senior Member, IEEE

Abstract—Modern data analysis applications require the ability to provide on-demand integration of data sources while offering a
flexible and user-friendly query interface. Traditional techniques for answering queries using views, focused on a rather static setting,
fail to address such requirements. To overcome these issues, we propose a fully-fledged data integration approach based on graph-
based constructs. The extensibility of graphs allows us to extend the traditional framework for data integration with view definitions.
Furthermore, we also propose a query language based on subgraphs. We tackle query answering via a query rewriting algorithm
based on well-known algorithms for answering queries using views. We experimentally show that the proposed method yields good

performance and does not introduce a significant overhead.

Index Terms—Data integration, data wrangling, GLAV mappings.

1 INTRODUCTION

ATA wrangling is defined as an iterative data explo-
D ration process to enable analysis [1]. In contrast to data
warehousing approaches, where data are materialized in a
target schema tailored to a specific kind of analysis, virtual
data integration systems play a key role on the exploration
of a wealth of data that is yet to be integrated [2]. Tradi-
tionally, virtual integration systems have aimed to expose a
single mediated relational schema. Alternatively, given that
graphs are widely accepted as a convenient data model to
represent real-world abstractions and their relationships [3],
the community has proposed different solutions grounded
on this formalism. However, as the popularity of wrangling
systems grows, non-technical users face high-entry barriers
on interacting with them, requiring queries to be written
in technical languages such as Datalog [4] or SPARQL [5].
Additionally, the vast number of available heterogeneous
and independent datasets on the web pose several chal-
lenges for contemporary wrangling demands [6]. Hence, the
development of flexible and easy-to-use data integration
systems remains an open research topic [7], [8].

We distinguish virtual integration proposals according
to (a) the data model/query language, and (b) the kind
of mapping used to connect the sources and the global
schema. A summary of the main approaches is presented
in Table 1. Regarding data model and query language, we
identify the classical (relational) database (DB) approach,
and the knowledge representation (KR) one. The former,
aims to expose a single relational schema as the integrated
database, while the latter relies on well-behaved fragments
of description logics to reason about data and incorporate
new facts [9]. Regarding mappings, we have: global-as-view

e Sergi Nadal, Alberto Abelld, and Oscar Romero, Universitat Politecnica
de Catalunya, Barcelona, Spain.
E-mail: {snadal,aabello,oromero}@essi.upc.edu

o Stijn Vansummeren, UHasselt - Hasselt University, Data Science Insti-
tute, Agoralaan, 3590 Diepenbeck, Belgium.
E-mail: stijn.vansummeren@uhasselt.be

o Panos Vassiliadis. University of loannina, loannina, Greece.
E-mail: pvassil@cs.uoi.gr

Manuscript received ?; revised ??

GAV LAV GLAV
DB_| [10], [11], [12] | [13L[T4L[15] | [16L[17]
KR | [5],[18], [19] | [20],[21], [22] | [4], [23]

TABLE 1: Overview of approaches w.r.t. data model and
query language (rows) and kind of mappings (columns)

(GAV) characterizing the target schema in terms of queries
over the sources; local-as-view (LAV) characterizing sources
in terms of queries over the target schema; and the most
generic global-local-as-view (GLAV) characterizing queries
over the sources in terms of queries over the target schema.

Nonetheless, DB-based integration systems require users
to explicitly state shared join variables in, commonly con-
junctive, queries (e.g., a Datalog query like R(z,y), S(y, 2)).
This requires an accurate understanding of the schema
in-use as well as the query language. Alternatively, KR-
based systems expose a graph-based data model enabling
expressive visual query paradigms to non-expert users [24].
KR-based systems adopting GAV mappings are limited by
the management of evolution in the sources (i.e., adding
or modifying the structure of a source might require re-
visiting multiple mapping definitions). This limitation is
lifted by LAV/GLAV-based systems. However, these ap-
proaches are inherently more complex than those in the
DB category due to the embedded reasoning capabilities.
To this end, the goal of this paper is to provide a single,
coherent, all-encompassing virtual data integration model
of (a) schemata, and (b) queries, in a way that facilitates (i)
easy registration of sources under a global schema, (ii) easy
(visual) query formulation without the need for expressing
joins, (iii) automatic translation of queries over the global
schema to queries over the sources at runtime, and (iv)
absence of any reasoning mechanism. In order to contribute
towards this goal, we build and extend previous work [25],
where we presented an ontology for query answering over
linear and acyclic queries. Here, we present a novel and
fully-fledged approach to virtual integration using graphs
as canonical data model for the whole process. Precisely,
we present a framework for query answering over graphs
mediating a set of heterogeneous data sources connected

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Integration Graph

[External Graph] [External Graph] [External Graph] i

|
Global Graph| |
|
|
|
|
|

[Source Graph]

(Global Graph]

Mappings Graph

[Source Graph] [Source Graph]

Local Schema Local Schema
Component DBS Component DBS

Fig. 1: Building blocks in an Integration Graph, adapted
from Sheth & Larson (1990)

via GLAV mappings. The proposed graph-based framework
(i.e., the integration graph) takes as building blocks Seth
and Larson’s reference architecture for federated database
systems [26], and adapts its components to Lenzerini’s
data integration framework [27]. As depicted in Figure 1,
an integration graph contains all the metadata constructs
representing a federated system.

The main novelty of our approach is a query language
based on coverings, or contours, of a graph representing the
global schema. The proposed language does not require
users to define join conditions, a task delegated to the
rewriting algorithm. This, enables a visual representation
of the query. Furthermore, as opposed to classic methods,
where different data structures are maintained for schemata
and mappings, our framework is entirely grounded on
graphs as unique data structure for all constructs. Besides
the flexibility and ease of use that bring to the wrangling
process, using graphs to represent data integration systems
brings performance benefits. Encoding all required meta-
data (i.e., global schema, source descriptions, mappings and
queries) in a single data structure simplifies the interop-
erability among them. This allows rewriting algorithms to
query such metadata structures (e.g., mappings), bringing
the ability to efficiently identify the relevant sources con-
taining a query posed over the global schema. Our approach
is theoretically and experimentally validated, proving its
soundness and showing its practical efficiency.

Contributions. We summarize our contributions as follows:

o We propose a novel graph-based framework for virtual
data integration with GLAV mappings.

e We introduce the notion of minimally-sound and
minimally-complete rewriting algorithms, which guaran-
tee to yield the maximally-contained rewritings of a query.

e We present a query rewriting algorithm, satisfying
the above properties, that reformulates graph-based
queries into maximally-contained rewritings. A distin-
guishing feature of our approach is that, by considering
the composition of sources, we yield more results than
the alternative methods with no performance overhead.

Outline. The rest of the paper is structured as follows.
In Sections 2 and 3 we related work and formalize our
framework. In Section 4, we present the rewriting algorithm,
followed by an analysis of its computational complexity

2

and a theoretical validation in Section 5. In Section 6, we
experimentally validate our approach. We finally conclude
our paper and present future work in Section 7.

2 RELATED WORK

The problem of answering queries using views has set
the theoretical underpinnings for several data integration
approaches [28]. As shown in Table 1, we distinguish two
families of systems: those exposing a relational schema as
integrated database (DB), and those exposing an ontology
(KR) as mediator. Here, we review related work for each
family distinguishing on the kind of used mappings.

DB-based approaches. GAV-based integration systems such
as TSIMMIS [10], Garlic [11] or MOMIS [12] pioneered the
field of data integration. With the bloom of web sources
the community started paying attention to LAV mappings
due to their expressive power for heterogeneous sources.
Rewriting LAV mappings is equivalent to the problem of
answering queries using views [28]. In data integration, it is
common to seek maximally-contained rewritings, being the
bucket algorithm [13], the inverse rules algorithm [14] and the
MiniCon algorithm [15] the most prominent techniques. Yet,
several methods have been proposed paying special atten-
tion to the scalability of the rewriting process. [29] proposes
to use graphs to represent distinguished and existential vari-
ables as intermediate data structure in the rewriting process.
This allows to detect common access patterns across sources
and generate a compact representation, showing scalability
results up to 10.000 views. Extensions of this model have
also been proposed focusing on the chase algorithm [30]. Re-
garding GLAV mappings, these were originally designed for
data exchange [16]. Query answering consists on computing
the chase over instances of the source schema, generating
new facts until all dependencies are satisfied. However, the
scalability of this method is still a major drawback [31].

KR-based approaches. The ontology-based data access
(OBDA) approach is the main representative of graph me-
diation. OBDA systems implement a virtual integration
approach using ontologies [32]. To this end, they adopt the
DL-Lite family of description logics as foundation, a well-
behaved fragment capturing a fair portion of conceptual
modeling formalisms, and guarantee first-order rewritability
of queries [9]. The ontology can be leveraged to complement
query results with further knowledge via reasoning, thus
being able to compute the certain answers. Most approaches
adopt GAV mappings, and thus the query answering task is
reduced to unfolding mappings [33]. Popular GAV-based
OBDA systems are Ontop [5], Morph [18] and Mastro [19].
Besides the popularity of GAV-based OBDA systems, LAV
[20],[21],[22] and GLAV [17], [34] mappings have also been
studied for description logics. Recently, new approaches
to OBDA using GLAV mappings have been proposed to
combinedly query the ontology and its instances [23].

As conclusion, we acknowledge that, to the best of our
knowledge, there is no work considering the intersection of
our problems of interest (i.e., query answering over graphs
without reasoning). Hence, our approach is complementary
to those presented, and fills a gap in scenarios where users
are non-technical and inference is not required.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

3 PRELIMINARIES

In this section, we introduce the formal background of our
approach, which allow to define the necessary conditions
for correct query rewriting algorithms.

3.1 Data source model and queries

Relations and wrappers. A schema R is a finite nonempty
set of relational symbols {r1,...,7,}, where each r; has
a fixed arity n;. Let A be a set of attribute names, then
each r; € R is associated to a tuple of attributes denoted
by att(r;). Henceforth, we will assume that Vi, j : i # j —
att(r;) N att(r;) = 0 (ie., relations do not share attribute
names), which can be simply done prefixing attribute names
with their relation name. Let D be an infinite set of values,
a tuple t in r; is a function ¢ : att(r;) — D. For any relation
r;, tuples(r;) denotes the set of all possible tuples for r;. A
wrapper w is an element in R with a function exec(w) that
returns a set of relational tuples T' C tuples(w). In practice,
wrappers can be implemented via any black box program as
long as there exists a mapping function from their specific
data model to first normal form (1NF).

Conjunctive queries. A conjunctive query (CQ) is an ex-
pression of the form

m

xwa) | \ Pi())

i=1

Q:ﬂ'g(wlx...

where wq,...,w, are distinct wrappers; Pi,..., P, are
equi-join predicates respectively over Zzi,...Z,; and both
Ui~, zi and 7 are subsets of |J"_; att(w;). Throughout the
paper, we might refer to a CQ as a 3-tuple Q = (m,>, W)
respectively denoting the sets of projected attributes, equi-
join predicates and wrappers of (). We might also refer to
binary equi-join predicates as pairs of the form p = (a1, az),
noting that (a;, az) = (az, a1). Next, we define the functions
att(Q), wrap(Q), pred(Q) and predatt(Q) respectively de-
noting the sets of projected attributes 7, wrappers W, equi-
join predicates <, and attributes contained in the equi-join
predicates of (). We define the composition of two CQs
(Q = Q1 ® Q2) as Q = (att(Qq) U att(Q2),pred(Qr) U
pred(Q2), wrap(Q1) U wrap(Q2)). Note the presented syn-
tax of CQs does not include filters (e.g., wi.age > 30). With-
out loss of generality, it is always possible to push down
unary selection predicates on top of every wrapper. We
use exec(Q) to denote the execution of a CQ @, a function
returning a set of tuples T' C {tuples(wy)X. .. xtuples(wy,)}
over g, where wy, . .., w, € wrap(Q). We also use Q1 C Q2
to denote a CQ)4 is contained in another CQ Q5. Addition-
ally, Q1 is maximally-contained in () if there does not exist
any @3 such that @; C Q3 C 2. We refer the reader to
[35] for the formal semantics on the evaluation of CQs and
query containment.

A union of conjunctive queries (UCQ) is an expression
of the form

Q=Q1U...UQ,

where @1, ..., Q) are union-compatible CQs. Two CQs @
and @) are union-compatible if there is a bijective function
between their attributes. From now on, we will interpret a
set of CQs as a UCQ. We use exec(Q) to denote the set of

tuples resulting from evaluating the UCQ (i.e., exec(Q1) U

. Uezec(Qy)). Finally, recall that, given a UCQ Q and a
CQ @', then Q' C Q if and only if thereis an 1 < i < n such
that Q' C Q,.

3.2 Integration graph

An integration graph 7 is a 4-tuple of edge-labeled directed
graphs (G, S, M, E), whose components we describe next.
Hereinafter, we assume all operations are applied over a
fixed instance of 7.

Global graph. The global graph G = (Vg, Eg) is an un-
weighted, directed edge-labeled graph where self loops are
allowed. V; is partitioned into two disjoint sets C' (concepts)
and I (features). The set F' itself is further partitioned into
four disjoint subsets, distinguishing derived/base features,
and ID/non-ID features. Hence, F'¢ and F}? refer, respec-
tively, to the sets of ID derived and base ID features, while
Fy and Fy, refer, respectively, to the sets of non-ID derived
and base features. Next, labels in Eg contain the domain
L of the user (i.e., any business concept) as well as the set
of semantic annotations A. Semantic annotations are system
specific labels, for instance to drive the query rewriting
process. Note that .4 and £ must be disjoint. For now,
we focus on the semantic annotation hasFeature, relating
concepts and their features. Hence, we formalize the edge
set Eg as the union of (1) C' x L x C, assigning labels in £
between concepts; and (b) C x {hasFeature} x F, linking
concepts and their features. We restrict features to be linked
to at most one concept. Hence, given a feature f, we use
conc(f) to refer to its associated concept. Conversely, for a
given concept ¢, we use feat(c) to refer to ¢’s set of features.
Regarding IDs, in the spirit of composite primary keys, we
allow concepts to have more than one ID feature. Moreover,
for each concept ¢, we assume functional dependencies from
IDs to non-IDs (i.e., {Fi¢ U F{d} — {F; U Fy}).

Global graph instances. Let V' be a countably infinite set of
node IDs, v an element in V, and D an infinite set of values.
An instance of a concept ¢ with features f1, ..., f, is a graph
G. = (V., E.), where V. = {v,d;,d,,}, with d; € D, and
E. = {(v, fi,d;)|i = 1..n}, where f; € feat(c). Intuitively,
this is a graph with exactly one node ID that is connected
to values using edges labeled with feature names. Then, a
global graph instance G from G with n concepts, is a graph
Ge, U...UG,,, such that, for each pair of concepts c;, ¢;
in G connected with label /, it satisfies that v; and v; are
connected in G; with label /. We denote G the set of all
possible global graph instances.

Fig. 2: Global graph and a query. Doubly circled features
denote IDs. For the sake of clarity, some hasFeature edges
have been omitted.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

I

@ - /&— @manlics

Wrappers

—_
<
<
B
i)
)
x
i
2
o
g
g AB
g]
=
° & 2 %,
O s % %
& = %,
% ; %
”
g
2
& b5
2
£ / e
Gl
& & o
= ’ — -
"
g
2 @/ @
2
5 4 (S A
¥ % s
) 2 7, N
g & %, &
2 by A by
& & e | <&
~ 2
4 \
\ 1 \
! I
\

IR W@ \@/W.

@@@@@OC@@@@@@.Q@.@@@@@@Q

o]
@
°

s,
%,
hag,
€atyre
gevl
S

ON
S

N\

@ sameAs >
Ve

N

o N
o@@@@@@@@@®@@@@®@@@®@

Fig. 3: An exemple integration graph. Doubly circled features denote IDs. The bottom colored graphs represent mappings
(i.e., subgraphs of G) for each wrapper dashed with the same color.

Global queries. A global query ¢ is a connected subgraph
of G disregarding edge directions. We say a graph G; =
(Vi, Eq) is a subgraph of Ga = (Va2, Es) (e, G1 C Ga)
if V(G1) € V(G2) and E(G1) C E(Gz2). We use feat(y)
to denote the set of features contained in (. The semantics
of a global query are based on graph homomorphisms, the
customary for graph databases [36]. Precisely, given two
directed edge-labeled graphs G = (V, E) and G’ = (V', E'),
a homomorphism from G to G’ is a function f : V — V'
such that for each pair u,v € V, (u,v) € FE implies
(f(w), f(v)) € E'. Thus, we will consider as instances of
¢ the set of graph instances ¢; C Gy such that, for each
G € ¢y, there exists a homomorphism from ¢ to G.

Example 1. Figure 2, depicts a global graph with three concepts.
The global query @1 asks for all features from A and B.

Source graph. The definition of the source graph S is
analogous to that of G. Intuitively, the source graph en-
codes in a graph manner wrappers and their schema. Here,
however, the vertex set Vs is composed of (W U A), re-
spectively the set of wrappers and attributes (recall that
S is a graph-based representation of the wrappers and
their attributes). Here, we introduce the semantic anno-
tation hasAttribute, meant to connect a wrapper with
its attributes. Thus, in S the edge set Es is composed of
(W x {hasAttribute} x A).

Mappings graph. The mappings graph M encodes LAV
schema mappings between S and §. Precisely, for a wrapper

w, a LAV schema mapping is a pair M(w) = (p,F),
where ¢ is a global query; and F is an injective function
F : att(w) — feat(p). Intuitively, the mappings graph
represents in the form of a graph schema mappings between
the source and global graphs. Then, we define the functions
glob(M(w)) and map(M(w)) respectively denoting, for
M(w), the global query ¢ and the mapping from attributes
to features F. Recall we encode mappings in a graph form,
precisely M contains ¢ and F. Thus, we represent ¢ via
a subgraph of G, which intuitively identifies the concepts
in G covered by w. To represent F, we extend the set
of semantic annotations A with the sameAs label, linking
attributes in S to features in G. Finally, we consider the
inverse correspondence F~! : f — A, in order to identify
the set of attributes A that map to a specific feature f.

Definition 1 (COVERINGZ(W, ¢)). A set of wrappers W covers
a global query « if it is a subset of the union of LAV mappings.
Formally, Vw € W : | glob(M(w)) 2 .

External graph. The external graph &£ encodes views to-
gether with the semantics of the expressions to compute de-
rived features (i.e., operational expression trees). Formally,
a view V is a triple (f, , T), where f is a derived feature
in the set { Fi? U F,;} € Vg, ¢ is a global query, and T is an
operational expression tree over feat(p). We use feat(V),
glob(V) and exp(V) to, respectively, denote f, ¢ and T. We
also use der(f) to denote the inverse function of feat(V).
An operational expression tree (or just tree) is a function
T : T — T, where T and T are sets of tuples. We

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

denote as sem(T) the semantics of T (i.e., the expression
it encodes), which are represented via an alphanumerically
ordered binary search tree ordered on the expression ele-
ments. Expression elements consist of algebraic operators,
function calls, variables and constants. We use T (T') to
denote the evaluation of sem(7) on the set of tuples 7.
A view V is represented in £ as a node V, where: feat(V) is
represented via the semantic annotation derives; glob(V)
is represented via a subgraph of G identified by V; and
exp(V) is represented via the withSemantics annotation.

Example 2. Figure 3, depicts a complete integration graph.

3.3 Querying the wrappers via the integration graph

Source queries. A source query v is a (potentially discon-
nected) subgraph of S. We denote att(+)) and wrap(v) re-
spectively the attributes and wrappers in 1. Source queries
are isomorphic to CQs for a given integration graph Z, hence
we define the isomorphism Az : ¥ — Q from the set ¥
of source queries to the set Q of CQs. We denote h; Lits
inverse. Precisely, hz(v) yields a CQ (att(v), P, wrap(s))),
where P are pairs of attributes that map to the same
feature in G. Henceforth, we will only consider equi-join
predicates among ID features, formally defined as Vp €
predatt(hz(v))Fw € wrap(y) : map(M(w))(p) € Fiq.
Containment of source queries is equivalent to CQ contain-
ment, hence, for two source queries ¥; and ¥, we say 9 is
contained in 9 (¢1 T 1)2) if and only if hz (1) T hz(1)2).

Definition 2 (COVERINGZ (¢, ¢)). A source query 1 covers a
global query ¢ if COVERINGz(wrap(v), @) is satisfied.

Definition 3 (MINIMALZ (1),)). A source query) is minimal
w.r.t. a global query ¢ if removing any wrapper from wrap(1)
yields a non-covering set of wrappers. Formally, fw € wrap(y) :
COVERINGz(wrap(v) \ w,).

Semantics of source queries. The semantics of source
queries is analogous to that of CQs over the wrappers. Yet,
evaluating ¢ one would expect to obtain a graph structure
instead of a set of tuples. Hence, we consider a homomor-
phism gz, : T, — Gy from the set of tuples T, resulting
from exec(hz(1))), to the set of global graph instances Gj.
Let T' be a set of tuples such that 7" C T, then for each
t €T, gz, (t) yields a graph G such that: (1) for each pair of
connected concepts ¢;, c; € ¢ with a label e, G' connects the
unique node IDs v;, v; with the label e (i.e., for each tuple
and concept, a new unique node ID is generated); and (b)
for each concept c linked to a feature f, G connects the node
ID ¢; to f’s corresponding value in ¢ using the label f.

Definition 4 (CONTAINMENTZ (v,)). A source query 1 is
contained into a global query ¢ (i.e., 1) T) if all tuples resulting
from the execution of hz (1)) are instances of . Formally, ¥Vt €
exec(hz(V)) : 97,4(t) € @r. ¥ is maximally-contained in ¢ if
there does not exist a source query v’ # 1 such that ¢ C ¢’ C ¢.

Example 3. Figure 4 depicts a contained source query ¢ of 1
(from Figure 2). Applying the isomorphism hz, after removing
redundant attributes, we obtain the same query in its CQ form.
Below, we present exemplary tuples from exec(hz (1)), followed
by the global graph instance form of t1 (i.e., gz,,(t1)).

hz(¥) = Tnpsuo(W1 X Wo X Wa)lp=rAg=uAt=u)

n|{pls|ulv
exec(hz(¥)): t1 | my | p1 | s1 | w1 | vg
to

N2 | P2 | 52 | U2 | V2
(v =2=()
97,01 (tl) R g %3 < S‘

Fig. 4: Contained source query, execution and global in-
stance of the global query from Figure 2

Rewriting algorithm. A rewriting algorithm is a function
Rz : ¢ — U from the set ¢ of all global queries to the set ¥
of sets of source queries, such that Vo € ¢, Rz(yp) consists
only of rewritings of ¢. We define the notions of minimally-
sound and minimally-complete rewriting algorithms.

Definition 5 (MINIMALLY-SOUND(Rz)). A rewriting algo-
rithm Rz is minimally-sound if Vo € ¢ and Vi € Rz(yp),
then MINIMALZ (¢, @) is satisfied.

Definition 6 (MINIMALLY-COMPLETE(R1)). A rewriting al-
gorithm R is minimally-complete if Y € ¢ and every 1) such
that it is a rewriting of v and MINIMALZ (v, o) is satisfied, it
holds that ¢ € Rz (o).

Theorem 1. Let o be a global query, and let R be a rewriting
algorithm. Each source query) in the set U = Rz(p) is
maximally-contained in ¢ (ie., T), if and only if Rz is
minimally-sound and minimally-complete.

Proof. Let U = {4)1,...,9,} be the set of source queries
resulting from Rz(p). We first show that each ¢; C ¢
showing that each tuple ¢ € exec(hz(t;)) is contained in
the set of instances of ¢. In other words, let G be the graph
generated by applying the homomorphism gz (), then we
must show that G is an instance of ¢, which reduces to
show there exists a homomorphism from ¢ to G. The if can
be shown relying on the fact that Rz is minimally-sound
(i.e., t is the result of a covering source query). In this case,
the number of edges in ¢ will be less or equal than the
number of edges in G, guaranteeing the existence of the
homomorphism. This is not the case under the assumption
that Rz is not minimally-sound. We additionally reason
that each ¢; C ¢ is maximally-contained in ¢, using the
assumption that Rz is minimally-complete. This guarantees
there does not exist a source query ¢’ ¢ WU such that
COVERINGZ (¢, ¢). O

Problem statement. The problem of rewriting queries ¢
over an integration graph 7 reduces to finding a minimally-
sound and minimally-complete rewriting algorithm Rz.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

4 REWRITING CONJUNCTIVE QUERIES

In this section, we present REWRITECQ, a three-phase
minimally-sound and minimally-complete rewriting algo-
rithm. We detail each of its phases, and later present a
discussion on its computational complexity and properties.
Algorithm 1 depicts the main method that rewrites
global queries (. It starts unfolding the GAV mappings in
&, and encoding the computation of derived features as
virtual wrappers. Then, LAV mappings are used to find
equi-join conditions among wrappers to yield a contained
UCQ Q. REWRITECQ is inspired by the bucket algorithm for
LAV mediation [13], which finds rewritings for each subgoal
in the query, and stores them in buckets. Then, it finds a
set of conjunctive queries such that each of them contains
one conjunct from every bucket. In our case, concepts are
analogous to buckets, however equi-join conditions must
be automatically discovered. Hence, we will first separately
find rewritings that cover the requested concepts in ¢ to
later find all possible minimal combinations among them.

Algorithm 1 REWRITECQ

Pre: 7 is an integration graph, ¢ is a global query
Post: W is a set of source queries

1: function REWRITECQ(Z, ¢)

2: I’ < UNFOLD(Z, ¢)

3: G < GENERATEREWRITINGS(Z', ¢)

4: W < COMBINEREWRITINGS(G)

5 return ¥

Throughout this section, we will exemplify our approach
using the global query depicted in Figure 5.

amjeagsey

1 \
\

@@ @) olololo)

~

Fig. 5: Global query ¢ used as running example

41

The first phase (see Algorithm 2) of the rewriting algorithm
consists on computing the derived features contained in
. The unfolding process consists on the generation of an
integration graph Z’ where there are no views associated
to derived features in . To this end, the first part of the
algorithm consists on, for each view V (line 4) associated
to every derived feature f in ¢, obtaining a UCQ @ (line
6) from the global query glob(V). Executing such UCQ
(line 7) yields a set of tuples 7', which will be used in
the computation of the derived feature via the operational
expression tree exp()).

The second part is devoted to generate a virtual wrapper
w, (line 8) with the result of computing the derived feature

Unfolding derived features

6

over Q. This is achieved taking a query in @Q (line 9)
to extract its schema (recall that queries in () are union-
compatible, hence all have the same schema). Then, the loop
in line 10 deals with the population of att(w,) with fresh
(i.e., new) attribute names avoiding repeating equivalent
attributes (line 12). The loop also populates the mapping.
Next, we also add a new attribute for the derived feature
(line 17) and its mapping. The set of tuples returned by w,
is defined as those from @ including an extra computation
for the derived feature. Finally, with some abuse of notation
in order to extend the isomorphism hz to wrappers, w, is
added as a new wrapper to Z’, while V is removed.

Algorithm 2 Unfold derived features

Pre: 7 is an integration graph, ¢ is a global query
Post: 7' is an integration graph where all features covered
by ¢ in 7 have been unfolded
1: function UNFOLD(Z, ¢)
'+ T _
for f € feat(p)|f € {Fi* U F;} do
V « der(f)
@d glob(V), T < exp(V)
Q < REWRITECQ(Z', q)
T + ezxec(Q)
Wy < new Wrapper ()
9: Q + takelAny (Q)
10: for w € wrap(Q) do

11: for a € att(Q)]a € att(w) do

12: if 3a’ € att(w,)|map(M(w))(a) = map(M(wy))(a’)
13: an < freshAttributeName ()

14: att(wy) U= an

15: map(M(wy)) U= (an — map(M(w))(a))

16: aq + freshAttributeName ()

17: att(wy,) U= aq

18: map(M(wy)) U= (aq — f)

19: glob((M(wy)) < @aq U (conc(f), hasFeature, f)
20: exec(wy) + TUT(T)

21: T’ U=hg'(w)

22: I'\=V

23: return 7'

Example 4. Recall that feature cy4 in the running example
depicted in Figure 5 is a derived feature. After unfolding its
corresponding view, the integration graph I' would contain a
wrapper w,,, where att(w,) = {i,4,k,1} resulting from the
computation of the query Ty, w7 (W3 X Wa)|w = z).

4.2 Generating rewritings

This second phase (see Algorithm 3) receives as input an
integration graph Z and a global query ¢, where all features
covered by ¢ in 7 have been unfolded. Here, the objective is
to generate sets of rewritings for each concept in conc(p). To
this end, we define the rewritings graph Gy, = (Vy, Ey), an
auxiliary graph data structure such that vertices V;, are sets
of source queries W. Intuitively, the rewritings graph will
encode, for each concept ¢ in conc(yp), all rewritings that
are covering and minimal with respect to ¢ and its queried
features. The output of Algorithm 3 is a graph G .

For each concept ¢ covered by ¢, Algorithm 3 populates
the set of attributes A such that have mapping to some
queried feature (lines 4-6). Then, it searches for candidate
source queries (line 7). This is, CQs containing all attributes

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

that map to some queried feature in feat(c) for a wrap-
per (lines 8-12). The last step, consists of systematically
processing the set of candidate source queries in order to
generate rewritings (i.e., covering source queries that only
use IDs on equi-joins) (lines 14-17). To this end, the method
COVERINGCQS is leveraged. Finally, the rewritings graph
Gy is constructed preserving the original edge labels in .
This is achieved, for each edge e not labeled hasFeature,
obtaining its source node (i.e., FROM(e)) and its target node

(i.e., TO(e)).

Algorithm 3 Generate rewritings

Pre: 7 is an integration graph with no derived features, ¢ is
a global query
Post: G, is a rewritings graph
1: function GENERATEREWRITINGS(Z,)
2: Gy < empty rewritings graph
3: for c € conc(p) do
. A0
5. for f € feat(p)|f € feat(c) do
6: Au=F! f)
7 Veandidates < (Z)
8
9

fora; € Ado
: Q « {ai}, 0, {wrap(a:)})
10: for a; € Ala; # a; ANwrap(a;) = wrap(a;) do
11: att(Q) U= a;
12: \Ilcandidates U= hil(Q)

13: \Ilcovem'ng «— (Z)
14: while ¥ qndidates 7 0 do

15: 1;[) < takeAny (\I]candidates)
16: I + ({c¢} x {hasFeature} x feat(y))
17 \I/cm)ering U= COMPOSE(I, djy djcandidates)

18: V(Gw) U= \I/covem‘ng

19: for e € E(y)|label(e) # hasFeature do
20: E(Gy) U= (FROM(e), e, TO(e))

21: return G

Composing source queries into rewritings. The process of
generating rewritings (see Algorithm 4) is a recursive task
that given an input source query ¢ and a set of candidate
source queries, incrementally generates covering combina-
tions (i.e., rewritings). Ultimately, each of this generated
combinations must cover the graph I. Here, I represents
the graph induced by the concept c and its queried features.
It is important to note that this method finishes when
composing a new rewriting would not yield new features,
which ensures minimality. Generating the combination of
two source queries might entail discovering join conditions
among them (see method FINDJOINS in Algorithm 5).

Join discovery. Given two source queries 1, and v, the
method FINDJOINS (see Algorithm 5) performs the process
of finding equi-join predicates among them. This is, it finds
all shared IDs covered by wrap(v,) and wrap(i)y). First, the
algorithm identifies the sets of IDs F4 and Fy¢ that both
source queries contribute to (line 3-6). Then, for each shared
ID f, it finds pairs of attributes that have a mapping to it,
which will define a new equi-join predicate.

Algorithm 4 Compose source queries

Pre: I is the graph to check coverage, 9 is a source query,
Yeandidate 1S a set of candidate source queries
Post: Ycandidate 1S empty, Yeovering contains all potential
combinations of covering rewritings with respect to 1
1: function COMPOSE(I, ¥, Yeandidate)
wcovering — (Z)
if COVERING(¥, I)
wcove'ring U= 1/}
else if 1pcandidate 7é Q)
for '(// € Yeandidate 40
if) Uy’ provides more features than 1
Ynew — FINDJOINS(9), ')
COMPOSE(Ia quneun wcandidate \ ’l/)/)

return wcovering

> From Definition 2

—
=

Algorithm 5 Find joins

Pre: 1, and 1)y, are source queries
Post: ¢ is a rewriting from the composition h(1,) @ h(s)
with the necessary equi-joins among them
1: function FINDJOINS(¢g, ¥p)
2. Fide)
3: forw € wrap(y,) do
4 for a € att(w) do
5: if map(M(w))(a) € {Fi4U Fy}
6: Fid U= map(M(w))(a)
7. F{? < repeat lines 3-6 using 1,
8 i+ 0
9: for f € {Fi?N Fi’} do
10: forw, € wrap(y,) do

11: for a, € att(w,)|a, € F~1(f) do

12: for wy, € wrap(yy) do

13: for a, € att(wy)|ay € F~1(f) do

14: if map(M(w))(aq) = map(M(w))(as)
15: B U= (aq, ap)

16: Q<+ h(wa) (5] h(wb)
17: pred(Q) U=
18: return h=1(Q)

Example 5. On the running example’s global query, the output
of Algorithm 3 would be the graph G, depicted in Figure 6.

Fig. 6: Rewritings graph for the global query in Figure 5

4.3 Combining rewritings

Algorithm 6 combines rewritings covering connected con-
cepts. It receives as input a rewritings graph Gy, and

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

systematically compacts edges to generate new sets of min-
imal source queries. At each iteration, a synthetic node is
generated from compacting the sets of rewritings ¥, and
Wy, respectively the FROM and TO nodes of an edge e. The
algorithm ends when the graph has no edges. Precisely, the
set of wrappers W, identifies wrappers that cover the edge
e. Hence, only combinations containing some wrapper cov-
ering e will be considered, which reduces the search space.
Note CHOOSEEDGE might range from a purely random
selection to an informed heuristic prioritizing early pruning.

Algorithm 6 Combine rewritings

Pre: G, is a rewritings graph
Post: V(Gy) is a set of source queries
1: function COMBINEREWRITINGS(G'y)
while E(G) # () do
e <— CHOOSEEDGE(Gy)
We 0
for w € wrap(FROM(e)) do
if e € glob(M(w))
W, U=w
repeat lines 5-7 using TO(e)
I <+ is the subgraph of ¢ that FROM(e) and TO(e)
cover, connected via the edge ¢
10: U+ COMBINE(FROM(e), TO(e), W, I)
11: Remove FROM(e), TO(e) from G, add a new vertex
¥ preserving connectivity.

12: return V(Gy)

N

Combining sets of rewritings. Given two sets of source
queries ¥, and ¥;, COMBINE (see Algorithm 7) generates
their minimal combinations. Precisely, only pairs in the
cartesian product ¥, x W; covering the edge and minimal
will be considered. Coverage is based on checking if any
wrapper on both ends covers it. Minimality is checked on a
graph I, which denotes the subgraph of the original global
query ¢ that the synthetic node represents. For instance, at
the second iteration, after compacting nodes B and C' to
generate a new node BC, minimality will still be checked
on the original subgraph B — p¢ C (including their queried
features). To generate such combination, the previously
described method FINDJOINS is used (see Algorithm 5).

Algorithm 7 Combine sets of rewritings

Pre: U, and ¥, are sets of source queries, W is a set of
wrappers that cover the edge connecting ¥, and ¥ in
the rewritings graph, I is the graph to check minimality

Post: ¥ is a set with all valid combinations of ¥, and ¥,

1: function COMBINE(V,, Wy, W, I)
22 U9

3 for <wa7¢b> €V, x ¥, do

4 if wrap(vy) CW V wrap(yhy) C W

5: if MINIMAL (Y, U ¥y, I) > From Definition 3
6 W U= FINDJOINS(¢q, ¥p)

7. return ¥

Example 6. In the running example, Algorithm 6 will perform
two iterations (i.e., edges AB and BC). The resulting rewriting
is depicted in Figure 7.

hl(wn) = {ﬂ_n,p,s,u,v,m,y,z,l((wl X wg X w3 X wyq X w/)|

p=rAgq=uAt=ulAw=xAz=1)}
Fig. 7: G generated in Algorithm 6, and isomorphic UCQ

5 ALGORITHM ANALYSIS

In this section, we discuss the computational complexity
of REWRITECQ and show how minimally-soundness and
minimally-completeness are satisfied.

5.1 Computational complexity

To classify REWRITECQ to its complexity class let us first
define a function dep(w) that returns a set of wrappers w C
W for which w depends on (i.e., they are used as part of
the computation of erec(w)). Likewise, we also define the
closure dependency operation dep* (w) as the recursion

0, if dep(w) = 0,

dep*(w') Uw’, for w’ € dep(w) otherwise.

dep”(w) = {

Then, we say that a wrapper w has a cyclic dependency if
w € dep*(w). Particularly, our unfolding algorithm per-
forms a particular instance of the chase [37]. Hence, for
certain integration graphs where there exist cyclic depen-
dencies there may not exist a finite chase and the algorithm
might fall into infinite recursion.

Theorem 2. Rewriting a global query is NP-hard in query
complexity if all wrappers covering @ have no cyclic dependencies.

Proof. Theorem 2 is proved by reduction from Set Cover [38],
a well-known NP-hard problem defined as: given a set S of
n points and F = {51, S52,...,S5,} a collection of subsets
of S, select as few as possible subsets from F such that
every point in S is contained in at least one of the subsets.
The reduction works as follows. Let us consider a global
query ¢, where for each point in S we generate a triple
pi = (s,4,t) € ¢ (note graph edges can be disregarded
and checked at the end). Then, from the set {Si,...,S,}
we consider the set of all wrappers covering some point
in S. We can see that finding combinations of subsets is
equivalent to finding combinations of wrappers such that
the complete set of attributes in the query is covered. Fur-
thermore, set cover seeks as few as possible subsets, which
is equivalent to our definition of minimality. As a matter of
fact, we are interested in enumerating all possible solutions
of the problem (i.e., minimally-completeness), while in some
instances of set cover finding one is enough. O

Next, we aim to get an accurate cost formula for
REWRITECQ. Let W be the average number of wrappers

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

covering each concept (not including uncovered concepts),
F' be the number of features in a global query ¢, and C be
the number of concepts covered in . Recall that Algorithm
3 generates all covering source queries per concept, by incre-
mentally obtaining all different ways to perform equi-joins
among them. Next, Algorithm 6 further finds all combina-
tions of these sets of rewritings. From the previous rationale,

we can conclude that the complexity of REWRITECQ is
wHC .
O((F)). Its worst case corresponds to the scenario where

each wrapper only contributes to one queried feature, and
thus all possible combinations are explored.

5.2 Minimally-sound and minimally-complete

Here, we show that REWRITECQ is a minimally-sound
and minimally-complete rewriting algorithm. Precisely, we
show the following invariants: (2) Q does not contain any
non-minimal CQ, and (b) Q contains all minimal CQs. We
assume that the integration graph covered by a query ¢ has
no derived features (i.e., all have been unfolded).

Proof. The trivial case occurs when ¢ covers a single concept
c. Here, only Algorithm 3 will be executed to generate
covering queries for c. Then, the set ¥ 4ndidates contains
all candidate source queries that cover ¢ and some of its
queried features. Next, Algorithm 4 systematically combines
source queries. Indeed, this process only generates minimal
rewritings (as any combination not contributing with new
features is discarded), which guarantees the first invariant.
Regarding the second invariant, it is guaranteed by the
recursive nature of Algorithm 4, which explores all com-
binations of candidate source queries to generate rewritings
(i.e., with all possible equi-join conditions).

Querying more than one concept involves Algorithm 6.
We assume a rewritings graph G, with vertices ¥4,..., ¥,
containing sets of minimal rewritings. Given an edge in
G, we systematically generate all possible combinations of
rewritings from the FROM and TO vertices. We show that all
minimal rewritings are obtained by reductio ad absurdum.
Let us assume the output of Algorithm 6 does not contain
a minimal source query . This directly contradicts the fact
that combining sets of rewritings in Algorithm 7 checks for
minimality (line 5), thus guaranteeing the first invariant.
Then, recall that all combinations of rewritings have been
computed by a cartesian product (line 3 of Algorithm 7).
Hence, 1 has necessarily been generated here, and thus been
added to the set ¥ if minimality is satisfied. This contradicts
the assumption and guarantees the second invariant. O

6 EXPERIMENTAL EVALUATION

In this section, we measure the performance of REWRITECQ
and compare it to alternative approaches for answering
queries using views. All details and reproducibility instruc-
tions can be found in the companion website!.

6.1 Experimental setting

To assess our algorithms and facilitate their comparison
to alternatives, we generate artificial data via a principled

1. https:/ /www.essi.upc.edu/dtim/odin/

9

method which is depicted in Algorithm 8. Precisely, we sys-
tematically generate synthetic experimental scenarios with
different characteristics. Each scenario consists of a global
graph, a set of wrappers, mappings, and a global query. To
evaluate our approach under different situations, we cus-
tomize the generation of experimental scenarios using the
following variables: 1) number of features per concept (|F|);
2) number of edges covered by a query (|Egl); 3) overall
number of wrappers (|IW]); 4) number of edges covered
by a wrapper (|Ew|); 5) fraction of features in a concept
covered by a query (F'racg); and 6) fraction of features in a
concept covered by a wrapper (F'racy). Then, the process
of generating an experimental scenario consists of obtaining
random subgraphs of a large enough clique playing the role
of G, which guarantees the desired randomness.

Algorithm 8 Generate an experimental scenario

Pre: G isaclique, |F|, |Eq|, |W|, |Ew|, Fracq, Fracw
Post: ¢ is a global query, W is a set of wrappers covering ¢
1: function GENERATEEXPERIMENTALSCENARIO(G, |F|, |Eq|,
\W|, |Ew|, Fracg, Fracw)
¢ < connected random subgraph of G with |Eq| edges
¢’ «+ with a probability Fracg of appearing, expand ¢
with up to | F| features
W0
fori <« 1to|W|do
w < connected random subgraph of ¢ with |Ew | edges
w’ < with a probability Fracw of appearing, expand ¢
with up to | F| features
wWUu=uw'
return (o', W)

o x

For each combination of experimental variables, we gen-
erate an experimental scenario and invoke REWRITECQ. For
each run, we measure the size of the resulting UCQs (U)
and the processing time ([2) in seconds. To account for
variability, we generate three experimental scenarios and
measure the median of R. Experiments were performed
on a GNU/Linux machine with an Intel Core i5 processor
running at 3.5 GHz and with 16GB of RAM memory. We
implemented a prototype of the rewriting algorithms [39],
which is based on SPARQL. There, each construct is repre-
sented as an RDF graph.

Alternatives. We compare our approach with the following
state-of-the-art solutions for answering queries using views,
whose source code is openly available: MiniCon [15] and
Graal [22]. The former being a representative of DB-based
approaches and the later of the KR-based ones, according
to the classification used in Section 2. No fine tuning was
performed in such systems, running the code as provided
out-of-the-box. To enable a fair comparison of our approach
and the alternatives we convert the output of Algorithm 8
into a set of Datalog rules. Recall, however, that our setting
does not explicit join variables, hence for each directed
edge between a pair of concepts A, B, we materialize the
ID features of B in A’s variables. Then, for each concept
covered in a query or a wrapper, we generate a subgoal
with its corresponding attributes. For the case of wrappers,
we additionally rename attributes using the mapping from
attributes to features (i.e., map(M(w))).

Differences on query rewriting semantics. There exist
some circumstances where the query rewriting semantics

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

10

Fracyy = 0.3

] 100 1000
2 [
2 100
6 10 [
8 10
10 i
i 100
1000 ——+—+—+—————) 1000
2 [
2 100 100
6 i
8 10 10 ¢
10 i
18 1

10 T 1000
2 &
4 100 ¢
6 i

8 10 2

10 F

‘ 1

©

|
<
«©

| | | | |
o < © A <
[se] © — @ ©

128

Fig. 8: Evolution of R (y-axis) w.r.t. |W| (x-axis) and |Eq| (legend), for |F'| = 20 and |Ew | = 2. Missing data points denote
that the program ran out of memory due to the size of intermediate results.

of our approach and the alternatives might differ. We next
list the three situations we consider using Datalog notation:

o Equivalent views, where different views contain the same
subgoals and their head variables fully overlap (i.e.,
they are the same).

o Intra-relation composition, where different views contain
the same subgoals but the head variables partially
overlap. All subgoals in the views correspond to the
same relation.

o Inter-relation composition, where different views contain
the same subgoals but the head variables partially over-
lap. Additionally, there is at least one view projecting
attributes from two different relations.

Table 2, depicts, for such different scenarios the behavior of
the different approaches using an exemplary set of views.
Precisely, when managing equivalent views, for the exem-
plary set of views all approaches would return the union
of w; and ws. However, when dealing with subsets of
attributes, either all from the same subgoal or from different
subgoals, both MiniCon and Graal do not consider their
composition joining via the shared attributes. Oppositely, in
both scenarios we would join w; and wy using A under the
assumption that A is tagged as an ID feature. Precisely, the
process of composing source queries deals with the intra-
relation composition scenario (see Algorithm 4), while the
combination of rewritings deals with the inter-relation com-
position (see Algorithm 6). Note that we, additionally, have
validated that the solutions generated by the alternatives are
always contained in ours.

6.2 Experimental results

The results showed a high correlation between the size of
the resulting UCQs U and the processing time R (i.e., a
Pearson correlation coefficient of p = 0.997), thus, for space
reasons, we only report on R.

o
% N4 @CJ
t>° o3 Q & &
B & & > &
o G ¥ E |
Equivalent w1 (A,B):r(A,B .
qViews w2 EA, Bg : r%A, Bg Union
Intra-relation | wi(A, B) :r(A, B,C) 0 Join
composition | w2(A,C):r(A,B,C)
wi(4, B) : r(4, B),
Inter-relation s(B,C 0 Join
composition wa(A,C) : r(A, B),
s(B,C)

TABLE 2: Comparison of approaches based on different
kinds of query rewriting semantics. The second column,
depicts an exemplary minimal set of Datalog rules scenarios.

Evolution of response time based on wrappers. We first
analyse how R evolves based on the number of wrappers.
To this end, we plot, in a logarithmic scale, its evolution
for different values of |W|. As depicted in Figure 8, there is
an exponential trend for I® as the number of sources (i.e.,
wrappers) grows. Nonetheless, we can see our approach
can efficiently deal with a large number of sources (ie.,
128) while the number of edges in the query is relatively
small. With an increased number of covered edges in ¢, the
cost also grows exponentially, as occurs on algorithms for
answering queries using views. The limitation on number
of wrappers is observed as the number of edges covered
by the query (ie., |Eqg|) grows. We also observe that, on
average, rewriting performance decreases when wrappers
cover a large fragment of G (i.e., Fracw = 0.9). Precisely,
as shown in Figure’s 8 top-right corner, such worst case is
observed when the query covers a small fragment of G (i.e.,
Fracg = 0.3) but the wrappers cover a large fragment (i.e.,
Fracy = 0.9). As expected, this case might generate many
combinations of wrappers composing the same concept to
cover all requested features (i.e., the intra-relation composition

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

11

Wrappers [Ewl =2 [Ewl =4 [Ewl =6 [Ewl =8 [Ewl =10

) e s w— P S S—— DA Y E— e

e X g5t 4 10} 1 18L 150 12k A

16 —a— © 4‘%' 8 r]l 8¢ — 00— 9 60— | 20 i]
32 23¢—n 5o G 6¢—o— 90— 3 ¥ T 10 » 15+ @

20— 82 A — 4 S —— 10

128 1 7™ R g QE#S > & 5| g 1

o0 . ‘ ‘ 0 0 T 0 0

|[Eql 2 4 6 8 10 4 6 8 10 6 8 10 8 10 10

Fig. 9: Evolution of R (y-axis) w.r.t. |Eg| (x-axis) and |W| (legend), for |F'| = 20, Fracg = 0.6 and Fracy = 0.6

semantics). Contrarily, with lower values of Fracw, it is
harder to find combinations covering the requested features,
and hence the rewriting time significantly decreases.

Evolution of response time based on query size. In this sec-
ond experiment, we are concerned with studying the impact
of the size of the query on the time to perform a rewriting.
To this end, we plot the evolution of R for different values
of |[Eg| and |Ew|. Here, we focus on an intermediate case
and hence we fix Fracg and Fracy to 0.6. As depicted
in Figure 9, the cost of rewriting is linear in spite of some
variability. This shows that the only exponential factor on
query rewriting is the number of sources (i.e., |W]), a well-
known bottleneck in query rewriting algorithms.

Comparison to alternatives on query rewriting. In pre-
vious experiments, we observed that both the size of the
query and the wrappers (i.e., |Eg| and |Ew]|) have no
major performance impact (i.e., they are not an exponen-
tial factor) for our rewriting process. Hence, here we fix
Eg = 2 and Ew = 2 to focus on comparing a varying
number of wrappers against the alternatives. Furthermore,
as presented in Table 2, the only meaningful comparison
with the alternatives occurs when no intra or inter-relation
composition is required. Precisely, following Algorithm’s 8
notation, this corresponds to the case when both F'racg = 1
and Fracy = 1. We compared the runtime for small values
of |F'|, as our tests showed that the alternatives struggled
to manage a large number of features (e.g., 15 — 20). In
order to control the execution time of the alternatives, we
set a timeout value equal to 10z the time we take to run
Algorithm 8 and rewrite the query. We believe this is a
large enough value to demonstrate the better performance
of our method, while at the same time avoid too lengthy
executions of the alternatives. Then, Figure 10, depicts the
runtime comparison. Note that, missing data points corre-
spond to execution timeouts. First, we can observe that both
alternatives have a much steeper exponential trend than
ours. While we efficiently deal with 64 wrappers, MiniCon
only manages to successfully execute around half of them.
Graal fails to manage more than 10 wrappers. We believe
the major performance drawback of such methods is the
number of intermediate results they manage (i.e., candidate
queries). Indeed, we have observed an exponential number
of existential rules in their executions. Under these circum-
stances, exploration of the search space in a breadth-first
search manner, as Graal does, becomes extremely costly.
Oppositely, and considering we generate more solutions due
to our rewriting semantics, thanks to the ability of querying
the mappings, which are stored as graphs, we can select only
relevant views in an incremental and more efficient manner.

Fl=3 IF|=6

F[=9
100 EHHHHHl\HlHHHHHHHH\ 100 E\HHHHHHHHHHH\HHHE 100 ‘ |

il
8 16 24 32 40 48 56 64

Graal —{1—

AT 0.1
8 16 24 32 40 48 56 64

LA 0.1
8 16 24 32 40 48 56 64

RewriteCQ —X%—

0.1
W
MiniCon —%—
Fig. 10: Runtime evolution (y-axis) w.rt. |W| (x-axis)
and alternative approach under comparison (legend), for
Fracg = 1, Fracw = 1, Eg = 2, and Ey = 2. Missing
data points denote that the execution of the alternatives
timed out.

7 CONCLUSIONS

In this paper, we have presented a framework for data
integration entirely based on graphs. In the proposed ap-
proach all classical constructs such as schema, queries and
mappings are represented using graphs. We advocate that
such unique, and widely accepted, data management for-
malism allows non-technical users to perform exploratory
tasks, such as data wrangling. On top of that, the flexibility
of graphs enables the extensibility of the current rewriting
algorithm. For example, to jointly consider aggregations
when running the rewriting algorithm. We have addition-
ally presented solid foundations for the design of rewrit-
ing algorithms that preserve desired query containment
properties Our experimental results show that there is no
significant overhead for join discovery, and that, as usual
on algorithms for answering queries using views, the major
source of complexity is the number of data sources. Despite
this, and the fact that our rewriting semantics are richer,
the performance of our approach is superior to that of
alternative methods for answering queries using views.

Acknowledgements. This work is partly supported by
Barcelona’s City Council under grant agreement 20S08704.

REFERENCES

[1] S.Kandel, J. Heer, C. Plaisant,]. Kennedy, F. van Ham, N. H. Riche,
C. Weaver, B. Lee, D. Brodbeck, and P. Buono, “Research directions
in data wrangling: Visualizations and transformations for usable
and credible data,” Information Visualization, vol. 10, no. 4, pp. 271-
288, 2011.

[2] M. Buoncristiano, G. Mecca, E. Quintarelli, M. Roveri, D. Santoro,
and L. Tanca, “Database challenges for exploratory computing,”
SIGMOD Record, vol. 44, no. 2, pp. 17-22, 2015.

[3] R. Angles and C. Gutiérrez, “Survey of graph database models,”
ACM Comput. Surv., vol. 40, no. 1, pp. 1:1-1:39, 2008.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(4]

(5]

6]

(71
(8]

(9]

(10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]
(28]
[29]

[30]

N. Konstantinou, E. Abel, L. Bellomarini, A. Bogatu, C. Civili,
E. Irfanie, M. Koehler, L. Mazilu, E. Sallinger, A. A. A. Fernandes,
G. Gottlob, J. A. Keane, and N. W. Paton, “VADA: an architecture
for end user informed data preparation,” J. Big Data, vol. 6, p. 74,
2019.

D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti,
M. Rezk, M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering
SPARQL queries over relational databases,” Semantic Web, vol. 8,
no. 3, pp. 471-487, 2017.

T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N. W. Paton, “Data
wrangling for big data: Challenges and opportunities,” in EDBT,
2016.

B. Golshan, A. Y. Halevy, G. A. Mihaila, and W. Tan, “Data
integration: After the teenage years,” in PODS, 2017.

M. Stonebraker and I. F. Ilyas, “Data integration: The current status
and the way forward,” IEEE Data Eng. Bull., vol. 41, no. 2, pp. 3-9,
2018.

A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Za-
kharyaschev, “Reasoning over extended ER models,” in ER, 2007.
H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,
Y. Sagiv, J. D. Ullman, V. Vassalos, and J. Widom, “The TSIMMIS
approach to mediation: Data models and languages,” J. Intell. Inf.
Syst., vol. 8, no. 2, pp. 117-132, 1997.

M. T. Roth, M. Arya, L. M. Haas, M.]. Carey, W. E. Cody, R. Fagin,
P. M. Schwarz, J. Thomas, and E. L. Wimmers, “The Garlic Project,”
in SIGMOD, 1996.

D. Beneventano, S. Bergamaschi, S. Castano, A. Corni, R. Guidetti,
G. Malvezzi, M. Melchiori, and M. Vincini, “Information integra-
tion: The MOMIS project demonstration,” in VLDB, 2000.

A. Y. Levy, A. Rajaraman, and J. J. Ordille, “Querying heteroge-
neous information sources using source descriptions,” in VLDB,
1996.

O. M. Duschka, M. R. Genesereth, and A. Y. Levy, “Recursive
query plans for data integration,” J. Log. Program., vol. 43, no. 1,
pp- 49-73, 2000.

R. Pottinger and A. Y. Halevy, “Minicon: A scalable algorithm for
answering queries using views,” VLDB Journal, vol. 10, no. 2-3, pp.
182-198, 2001.

M. Arenas, P. Barceld, L. Libkin, and F. Murlak, Foundations of Data
Exchange. Cambridge University Press, 2014.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi,
“Query processing under GLAV mappings for relational and
graph databases,” Proc. VLDB Endow., vol. 6, no. 2, pp. 61-72, 2012.
F. Priyatna, O. Corcho, and J. E Sequeda, “Formalisation and
experiences of r2rml-based SPARQL to SQL query translation
using morph,” in WWW, 2014.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi,
M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. F. Savo, “The
MASTRO system for ontology-based data access,” Semantic Web,
vol. 2, no. 1, pp. 43-53, 2011.

C. Beeri, A. Y. Levy, and M. Rousset, “Rewriting queries using
views in description logics,” in PODS, 1997.

F. Goasdoué and M. Rousset, “Answering queries using views:
A KRDB perspective for the semantic web,” ACM Trans. Internet
Techn., vol. 4, no. 3, pp. 255-288, 2004.

J. Baget, M. Leclere, M. Mugnier, S. Rocher, and C. Sipieter, “Graal:
A toolkit for query answering with existential rules,” in RuleML,
2015.

M. Buron, F. Goasdoué, 1. Manolescu, and M. Mugnier, “Ontology-
based RDF integration of heterogeneous data,” in EDBT, 2020.

S. S. Bhowmick, B. Choi, and C. Li, Human Interaction with Graphs:
A Visual Querying Perspective, ser. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2018.

S. Nadal, O. Romero, A. Abell6, P. Vassiliadis, and S. Vansum-
meren, “An integration-oriented ontology to govern evolution in
big data ecosystems,” Inf. Syst., vol. 79, pp. 3-19, 2019.

A.P.Sheth and J. A. Larson, “Federated database systems for man-
aging distributed, heterogeneous, and autonomous databases,”
ACM Comput. Surv., vol. 22, no. 3, pp. 183-236, 1990.

M. Lenzerini, “Data integration: A theoretical perspective,” in
PODS, 2002.

A. Y. Halevy, “Answering queries using views: A survey,” VLDB
J., vol. 10, no. 4, pp. 270-294, 2001.

G. Konstantinidis and J. L. Ambite, “Scalable query rewriting: a
graph-based approach,” in SIGMOD, 2011.

——, “Optimizing the chase: Scalable data integration under con-
straints,” PVLDB, vol. 7, no. 14, pp. 1869-1880, 2014.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

12

M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti,
D. Santoro, and E. Tsamoura, “Benchmarking the chase,” in PODS,
2017.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini,
and R. Rosati, “Linking data to ontologies,” Journal on Data Seman-
tics, vol. 10, pp. 133-173, 2008.

G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati,
“Using ontologies for semantic data integration,” in A Compre-
hensive Guide Through the Italian Database Research Over the Last 25
Years, ser. Studies in Big Data, 2018, vol. 31, pp. 187-202.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati,
and M. Ruzzi, “Using OWL in data integration,” in Semantic Web
Information Management, 2009, pp. 397-424.

S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

A. Bonifati, G. H. L. Fletcher, H. Voigt, and N. Yakovets, Querying
Graphs, ser. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, 2018.

D. Maier, A. O. Mendelzon, and Y. Sagiv, “Testing implications of
data dependencies,” ACM Trans. Database Syst., vol. 4, no. 4, pp.
455-469, 1979.

R. M. Karp, “On the computational complexity of combinatorial
problems,” Networks, vol. 5, no. 1, pp. 45-68, 1975.

S. Nadal, K. Rabbani, O. Romero, and S. Tadesse, “ODIN: A
dataspace management system,” in ISWC, 2019.

W Sergi Nadal received the PhD in Computer Sci-
ence in 2019 from Universitat Politécnica de

’ \ Catalunya (UPC) and Université Libre de Brux-
= f.’ elles (ULB). He is a postdoctoral fellow and

teaching assistant in the Database Technologies
and Information Management (DTIM) group in
UPC. His research interests are on systems as-
pects on data and information management.

Alberto Abelld is an associate professor at De-
partament d’Enginyeria de Serveis i Sistemes
d’Informacié (ESSI) of Universitat Politécnica de
Catalunya. PhD in Informatics, UPC. Local co-
ordinator of the Erasmus Mundus PhD program
IT4BI-DC. Active researcher with more than
100 peer-reviewed publications and H-factor of
28, his interests include Data Warehousing and
OLAP, Ontologies, NOSQL systems and Big
Data management.

Oscar Romero is an associate professor at De-
partament d’Enginyeria de Serveis i Sistemes
d’Informacié (ESSI) of Universitat Politécnica de
Catalunya. Local coordinator of the Erasmus
Mundus in Big Data Management and Analytics
(BDMA) programme and the Data Science mas-
ter at the Faculty of Informatics of UPC. His main
interests are data management, data integration
and data-intensive flows.

Stijn Vansummeren is a research professor in
data management and data wrangling at the
Data Science Institute of Hasselt University, Bel-
gium His research interests are in data man-
agement viewed broadly, where he focuses on
both foundational and systems aspects. Most
recently, he has worked on dynamic query pro-
cessing, information extraction, data integration,
and structural indexes.

Panos Vassiliadis is a professor at the Univer-
sity of loannina, Greece. His research focuses
on the rigorous modeling of data, software, and
their interdependence. Currently he works in the
areas of business intelligence and schema evo-
lution. He is a senior member of the IEEE. More
information is available at http:/www.cs.uoi.gr/
~pvassil.

