
Information Systems Frontiers manuscript No.
(will be inserted by the editor)

Quarry : A User-centered Big Data Integration
Platform

Petar Jovanovic · Sergi Nadal · Oscar
Romero · Alberto Abelló · Besim Bilalli

Received: / Accepted:

Abstract Obtaining valuable insights and actionable knowledge from data
requires cross-analysis of domain data coming typically from various sources.
Doing so, inevitably imposes burdensome processes of unifying different data
formats, discovering integration paths, and all this given specific analytical
needs of a data analyst. Along with large volumes of data, the variety of for-
mats, data models, and semantics drastically contribute to the complexity of
such processes. Although there have been many attempts to automate vari-
ous processes along the Big Data pipeline, no unified platforms accessible by
users without technical skills (like statisticians or business analysts) have been
proposed.

In this paper, we present a Big Data integration platform (Quarry) that
uses hypergraph-based metadata to facilitate (and largely automate) the in-
tegration of domain data coming from a variety of sources and provides an
intuitive interface to assist end users both in: (1) data exploration with the
goal of discovering potentially relevant analysis facets, and (2) consolidation
and deployment of data flows which integrate the data, and prepare them
for further analysis (descriptive or predictive), visualization, and/or publish-
ing. We validate Quarry ’s functionalities with the use case of World Health
Organization (WHO) epidemiologists and data analysts in their fight against
Neglected Tropical Diseases (NTDs).

Keywords Data Integration · Big Data · Data-Intensive Flows · Metadata

1 Introduction

The importance of data in today’s society is unquestionable. Available data
in almost any domain create an opportunity for users to obtain valuable in-

Universitat Politècnica de Catalunya (BarcelonaTech)
Campus Nord Omega-125, UPC - dept ESSI, C/Jordi Girona 1-3, E-08034 Barcelona, Spain,
E-mail: {petar,snadal,oromero,aabello,bbilalli}@essi.upc.edu

2 Petar Jovanovic et al.

sights and contextualize their business processes, as well as to get actionable
knowledge and competitive advantages, by performing advanced (descriptive
or predictive) data analysis [37]. However, in modern data-intensive ecosystems
the setting is moving from modeling well-defined domains with few structured
data sources towards the scale of hundreds and thousands of evolving sources,
each providing abundance of data, in a variety of forms. Consequently, in such
Big Data settings, the data management requirements go beyond traditional
data integration solutions [25], and integrating and preparing data for final
exploitation require more complex data transformations, efficiently handling
large quantities of data [20,4].

Moreover, enabling an integrated, cross-organizational strategy for ad-
vanced analytics requires close collaboration between domain experts, data
analysts (i.e., statisticians or machine learning experts), and data stewards
(i.e., data management experts). To facilitate this, in Big Data settings, we
need more complex processes than those typically encountered in the data
integration lifecycle [22]. Namely, first, new or evolved data sources, many of
them external, need to be registered by data stewards and made available for
domain experts and data analysts. Such sources should then be jointly explored
to assess their potential for the analysis, and to decide on the analytical facets
of interest. This process, crucial for settings with high variability of likely
unknown sources, includes the selection of relevant features (e.g., identifying
predictors for model construction) and the identification of related descriptive
statistics for those variables. Once data sources are explored, data stewards
should prepare tailored portions of selected data for performing the analytical
tasks. This process consists of deploying a data flow to, first extract the features
of interest, and further perform data preparation tasks, including unifying for-
mats and models, data pre-processing, and integrating different sources. Due
to possible poor quality of external data sources and the need for more ad-
vanced (e.g., predictive) analysis, it may also be required extending the flows
with various complex data transformations to improve data quality factors
and prepare the data for their final exploitation by data analysts. Moreover,
understanding the steps that undergo such data preparation opens the door to
its optimization, an important step having in mind that these data flows in Big
Data settings typically work with large quantities of data and require complex
transformation over them. In addition to the classical flow optimization [43],
given the dynamicity of different data flows and the fact that their parts are
typically shared by different end-users (with high temporal locality - 80% of
data being reused within minutes or hours [10]), more advanced techniques
like multi-flow optimization or view materialization may also be required.

Currently, such tasks are manually handled, relying on data stewards to
orchestrate numerous specialized technologies that cover specific processes in
the data integration lifecycle [22], thus yielding the whole process burdensome
and impractical for large scale settings. This clearly raises the need for au-
tomating different processes along the data preparation pipeline and assisting
end users in carrying out their analytical tasks. At the same time, having
well-defined and semantically rich metadata (i.e., data that describes the data

Quarry: A User-centered Big Data Integration Platform 3

themselves, the platform under use, and the users of the platform) is identi-
fied as a cornerstone for boosting the automation of different parts of the data
preparation pipeline [36,9]. In parallel, it has been advocated that integra-
tion of data sources must be led by “the users and their information seeking
activities” [16], hence claiming for user-centric solutions, more accessible for
data analysts to conduct richer (i.e., better contextualized) analysis, without
requiring data management proficiency. However, current systems still do not
completely cover the previously discussed data integration lifecycle for Big
Data settings, but focusing typically only on some parts and each defining
their own metadata, thus hindering their interoperability.

In this paper, we present Quarry, a comprehensive data integration plat-
form, primarily dealing with, but not limited to the variety dimension of Big
Data. Quarry, supported by semantically enriched metadata, provides a semi-
automated solution for the data preparation tasks, with the main objective to
assist non-technical users during their analytical efforts. Quarry represents a
platform where virtual and physical data integration complement each other.
In particular, the virtual approach, which avoids data materialization, can aid
on the combined exploration of data sources with no cost for space or syn-
chronization. Conversely, the physical approach, which stores data resulting
from integration, can provide benefits on saving reexecution of complex data
preparation pipelines, hence finally persisting analysis-ready data for the end
user (e.g., data cubes, data matrices or graphs).

To the best of our knowledge, Quarry is the first platform to support
collaborative, cross-organization analytics, by covering the complete data in-
tegration lifecycle for Big Data settings - from here onwards, we refer to it
as big data integration lifecycle. In particular, Quarry defines four functional
modules that facilitate the main tasks in the data preparation pipeline. Dur-
ing the data exploration phase, given the high-level user’s information needs
expressed in a domain-specific vocabulary, the Query Manager module au-
tomatically searches the possible integration paths (i.e., paths relating the
concepts of different data sources) to resolve a user query. At the same time,
it guarantees that the searched concepts and those found on the integration
paths can be answered from the existing data sources, by means of mappings.
From each resolved query, rewritten in terms of the data sources, the Query
Manager defines a data flow that can bring analysis-ready data to the end
user. This way, Quarry facilitates the analysts in discovering how the data
sources at hand integrate. Moreover, by integrating the data, it also helps
identifying relevant features for the analysis at hand, whose relevance in iso-
lation might not be apparent. The data flow can be additionally extended by
the Data Quality Manager module to resolve potential data quality issues and
enable required analytical tasks. Finally, the Flow Manager module can de-
ploy such data flow for periodic execution, providing a refreshed view of data
(e.g., for periodical reporting). To boost the reuse of the data processing tasks
and optimize resource utilization, Flow Manager can also propose a multi-flow
execution for several data flows, and select the optimal materialization level
and storage format for the resulting data.

4 Petar Jovanovic et al.

To automate these tasks, Quarry, through its Integration Management
module generates and stores a variety of metadata artifacts adopted from
the foundations of data integration [31], as well as from recent works tack-
ling data variety [47]. To represent such metadata artifacts, we propose a
unified hypergraph-based metadata model, which enables applying different
graph algorithms over the complete metadata structures, hence boosting the
automation of the data preparation tasks throughout the platform.

Contributions. We propose a comprehensive architectural view of the plat-
form to facilitate the complete data integration lifecycle, identifying the needed
functional modules and the potential for their automation through efficient
metadata exploitation. In particular, our main contributions are as follows:

– We present a unified Big Data integration platform, which enables end
users without technical skills to explore data spanning various sources,
integrate them, and prepare them for further specific analysis.

– We illustrate a compact, hypergraph-based model to flexibly and efficiently
represent metadata artifacts.

– We describe a functional module to semi-automatically build the metadata
repository in an incremental manner, as well as modules to facilitate the
data preparation tasks by efficiently exploiting such metadata.

– Finally, we validate the usability of our approach by showcasing its applica-
tion in an ambitious real world use case at the World Health Organization
(WHO) to control and eliminate Neglected Tropical Diseases (NTD)1.

Outline. The remainder of the paper is structured as follows. Section 2 dis-
cusses the related work. Next, Section 3 introduces the use case of applying
Quarry to the project of control and elimination of NTDs at WHO. Section
4 describes Quarry ’s functionality in a nutshell, presenting the main big data
integration lifecycle workflows, and kinds of metadata used throughout the
platform. Section 5, presents the core functional architecture of Quarry, pro-
viding detailed descriptions of its metadata, its functional modules and the
interaction among them. Finally, in Section 6, we conclude the paper and
discuss possible future directions.

2 Related Work

In this section, we review the literature on systems and architectures for Big
Data integration to enable data analytics. To this end, we will distinguish
among physical and virtual data integration systems. Nevertheless, we do not
consider systems restricted to descriptive data analysis (i.e., those that perform
traditional data warehousing and business intelligence tasks). These systems
limit the availability to pre-defined data analysis pipelines since they load and
manage data compliant with a pre-defined data model. In our use case, such
assumption does not hold, and the goal of this paper is thus to present an
architecture to support advanced and flexible data analysis.

1 https://www.who.int/neglected_diseases/disease_management/wiscentds

https://www.who.int/neglected_diseases/disease_management/wiscentds

Quarry: A User-centered Big Data Integration Platform 5

2.1 Physical data integration systems

Data consolidation requires the physical data integration of the data at hand.
While losing flexibility when dealing with source data, these systems exhibit
good performance due to their unified consolidated view of data.

Data lakes. The data lake [49,39] is nowadays the most widespread reference
architecture for physical integration of an heterogeneous set of data sources
in their original format following the load-first model-later approach. In prac-
tice, a data lake is implemented via a distributed file system, which provides
the foundations for distributed and parallel processing, together with fault
tolerance thanks to data replication. Nonetheless, data lakes per se do not
provide any means for data management or processing, hence there is a need
to enrich them with additional features such as data homogenization, cleaning,
deduplication or querying.

One approach to extend data lakes with richer semantic metadata is Con-
stance [23]. Constance automatically extracts structural and semantical meta-
data from the data lake’s contents in order to offer a unified query interface
over it. Further, the extracted schema is linked via GAV mappings to the
semi-structured data sources in order to provide query answering over them.
Alternatively, Google’s solution to manage their data lake Goods [24] crawls,
indexes and integrates a plethora of datasets in order to provide an orga-
nized and unified view over them. One of its key features is the relationship
graph, a data structure that encodes automatically extracted relationships be-
tween datasets like dataset containment, provenance or content similarity. A
search engine makes use of these metadata to enable further exploration of
the datasets content. Furthermore, the ADF architecture [21] builds on top
of the Hadoop File System to provide several optimization techniques based
on dynamically changing metadata. This includes features such as dynamic
partition elimination, advanced indexing techniques or cost-based workload
balancing.

Despite the many extensions to data lakes, they all purely focus on the
management of data and do not on their transformations and flows.

Polystores. Polystores are the evolution of federated database management
systems, which inherit their foundational principles but differ on the hetero-
geneity of the data sources, and the need to use and coordinate many spe-
cialized engines [46]. The BigDAWG polystore system [14] organizes datasets
into islands of information. Each island represents a collection of engines that
provides a single data model, and thus can be accessed using the same query
language. Source data are connected to islands via shims, which are dedi-
cated software modules that extract data from the specific source model into
the island’s target data model. Users query islands using their specific query
language, which is translated into partial queries over the shims.

The Data Tamer system [47] pays special attention to the process of data
curation and its scalability challenges. It adopts a wrapper-based architecture
to extract data from the sources into sites, which are collections of key-value

6 Petar Jovanovic et al.

pairs. Data Tamer contains components that mainly focus on functionalities for
schema integration, entity consolidation and record linkage, which make heavy
use of machine learning techniques. Alternatively, an evolution of Data Tamer,
is the Data Civilizer system [12]. Besides including the previously described
functionalities, this system also computes the linkage graph (i.e., a graph that
represents relationships among tables or keys) as well as computing queries
that discover join paths with data cleaning operators. Finally, Termite [15]
follows an alternative approach for schema integration using word embeddings
where entities, rows, columns and paragraphs are represented. An embedding
is a data structures that capture the semantic similarity of terms over a cor-
pus of documents. From these embeddings, Termite computes distances which
determine how close or related different schema elements are. The Termite-
Join operator returns, given an input entity, the top K closest elements in the
embedding in terms of the distance function.

Overall, we can say that polystores focus on representing metadata for
specific tasks, and thus are commonly limited on aspects such as the data
flows optimization and their management for data consolidation.

2.2 Virtual data integration systems

Virtual data integration systems are ideal for data exploration tasks, since they
provide higher degree of flexibility. However, the complexity of these systems
makes them unfeasible for intensive computational tasks such as predictive
analysis.

Knowledge-representation systems. Most virtual data integration sys-
tems have their origins in knowledge representation, and thus base their ar-
chitecture on the orchestration of different reasoning services on the so-called
ontology-based data access (OBDA) paradigm. An example is the VADA ar-
chitecture [30], aimed to support the process of data wrangling (i.e., extracting,
cleaning and collating datasets). VADA is composed by a set of transducers,
which are software components with input and output dependencies defined
as Datalog queries over the knowledge base or the state of a transducer. A rea-
soner acts upon such knowledge base using Vadalog, which is a language from
the Datalog±, and provides services for schema matching, schema alignment,
data fusion or data quality, among others. An alternative system is Ontop
[8], an OBDA solution that supports answering SPARQL queries over OWL 2
QL ontologies mapped via R2RML mappings to Relational databases. Ontop
adopts the global-as-view family of mappings, which guarantees that the com-
plexity of query rewriting depends only on the ontology and mappings and not
on the instances. A similar approach is that adopted by Morph [38], which also
employs R2RML mappings for answering queries on Relational databases.

Knowledge-representation systems emphasize thus the provision of flexible
reasoning mechanisms to directly query the sources. However, aspects such as
the further deployment of these queries into data-intensive flows considering
data quality aspects are not covered.

Quarry: A User-centered Big Data Integration Platform 7

Dataspaces. A dataspace is a data integration system that aims to tackle the
variety challenge by reducing the usual upfront and maintenance cost that such
systems have [17]. Dataspaces claim for the adoption of a flexible and dynamic
pay-as-you-go approach where different integration tasks are automated. One
of their key features is the management of uncertainty, and thus their query
mechanisms must support a certain degree of ambiguity [42].

Personal Information Systems (PIMs) are dataspaces that aim to capture
the totality or part of the digital life of an individual across several platforms
[1]. Their main goal is to offer user-friendly mechanisms so that users are in
control of their personal data, hence their query language includes features
such as NLP/KDD/search techniques for personal data, personalized answers
and explainability of query results. PIMs also emphasize the dimension of
ethical data management as such systems commonly interrelate policy makers,
regulators, organizations with the end-user.

In the case of dataspaces, the focus is consequently on information retrieval
and empowering users in the management of their data. This entails that data
quality and transformation issues are typically less relevant.

Metadata
Purpose Technique Type Data struct.

System

In
te
g
ra

ti
o
n

m
a
n
a
g
e
m
e
n
t

F
lo
w

m
a
n
a
g
e
m
e
n
t

D
a
ta

Q
u
a
li
ty

m
g
t.

Q
u
e
ry

M
a
n
a
g
e
m
e
n
t

L
e
a
rn

in
g

A
d
-h

o
c
T
e
ch

n
iq
u
e

C
ra
w
li
n
g

D
is
ta

n
c
e
/
ra

n
k
in
g

Q
u
e
ry

R
e
w
ri
ti
n
g

S
tr
u
c
tu

ra
l

S
e
m
a
n
ti
c

G
ra

p
h
/
o
n
to

lo
g
y

R
e
la
ti
o
n
s

E
m
b
e
d
d
in
g
s

Constance [23] X X X X X X X X
Goods [24] X X X X X X X X
ADF [21] X X X X
BigDAWG [14] X X X X X X
Data Tamer [47] X X X X X X NA NA NA
Data Civilizer [12] X X X X X X X X X
Termite [15] X X X X X X X X
VADA [30] X X X X X X X
Ontop [8] X X X X X X X
Morph [38] X X X X X X

Table 1: Characteristics of related systems

2.3 Summary

Table 1 categorizes the related work according to the purpose of each approach
in the context of the data integration workflow we devise. We also show the
presented techniques, kind of metadata adopted and the data structure that is
used to encode such metadata. We conclude that currently there is no system
spanning the whole data integration lifecycle: i.e., data exploration (through

8 Petar Jovanovic et al.

virtual integration) and data consolidation (materializing integrated data for
further analysis). Both approaches have well-known pros and cons but dealing
with them as separate systems hinders the automation of the whole process.
Quarry is a unique solution providing a unified view of metadata constructs
that facilitates data consolidation after conducting data exploration tasks on
the available data sources. As result, our level of automation is higher than
using independent systems for each task since current systems are not prepared
to interoperate and exchange their produced metadata.

3 Use Case: The Fight against NTDs at WHO

To validate the usability of Quarry, we present its application for building
a system to control and eliminate Neglected Tropical Diseases (NTDs) at
the World Health Organization (WHO). NTDs form a group of 21 diseases
with different, sometimes very complex aspects, all having in common that
they affect population typically from economically challenging, rural areas
of the world. Depending on the disease (e.g., Chagas Disase, Leishmaniasis),
transmission routes can vary (e.g., congenital from a mother to a child, blood
transfusion, organ transplantation, insect bites), as well as the causes of its
spreading worldwide (e.g., high presence and reproduction of insects in en-
demic areas, traveling to endemic areas, migration flows). All this makes the
control and eventual elimination and/or eradication of NTDs very challenging.

In addition, having that NTDs are still very often overlooked by national
health information systems, makes in most cases impossible to ensure good-
quality data collection at country level, resulting that the data reported by
health ministries are often incomplete. Nevertheless, historical or prospec-
tive data related to NTDs may also be collected by other actors (e.g., non-
governmental organizations, researchers) or extracted from other existing sys-
tems (e.g., pharmacovigilance systems like Uppsala Monitoring Center2 or
outbreak alert systems like ProMED3). Still, these data can be largely frag-
mented covering different aspects of the diseases, and very heterogeneous in
formats and data models used. Moving towards the target 3.3 of Sustainable
Development Goals (SDGs), i.e., ending the NTD epidemics by 2030, WHO is
on the need for a more complete and comprehensive epidemiological picture
of NTDs’ status worldwide (e.g., discovering epidemiological silence, studying
coinfection/comorbidity of diseases with overlapping geographical prevalence).
Intrinsically, they need to integrate NTDs data coming from a variety of data
sources, and create a consolidated data platform, hence enabling complex an-
alytics to be performed by epidemiologists and statisticians.

Therefore, in the rest of the paper, we exemplify how Quarry automates
the integration of the heterogeneous NTDs data and assists WHO users in
preparing data for further data analysis. We are focusing on a specific sce-
nario for detecting possible lack of official disease reporting at the country

2 https://www.who-umc.org
3 https://www.promedmail.org

https://www.who-umc.org
https://www.promedmail.org

Quarry: A User-centered Big Data Integration Platform 9

level (i.e., epidemiological silence), by querying alternative sources of informa-
tion. In such a scenario, the official diagnostic and treatment data coming from
ministries of health, can be crossed with information about the distribution of
medicine to the same areas, and this can be analyzed in terms of the country’s
main population or additionally including migrants, which is especially impor-
tant for the territories affected by the migration from disease endemic areas.
For better understanding, we are focusing on the domain of Chagas disease4.

We first here introduce the underlying data sources, and then in Section
5, we demonstrate the functionalities of Quarry by applying it in the given
scenario. Importantly, notice that while Quarry is being applied in a real
world project, for data privacy reasons, the data exemplifying the Quarry ’s
functionalities are either publicly available (i.e., published by United Nations)
or synthetically generated to simulate real data internal to WHO.

WIDP

GEN_DE_ADDRESS
Place of diagnosis

GEN_PLACE_COUNTRY
Country of diagnosis

CH_PR_16_AGE
Patient's age

CH_PR_16_GENDER
Patient's gender

CH_PR_BODY-WEIGHT
Patient's body weight

GEN_PLACE_BIRTH
Patient's country of birth

CH_PR_16_DIAGNOSIS_DATE
Date of the diagnosis

CH_PR_16_TRANSMISSION_ROUTE
Potential transmission route

CH_PR_16_DISEASE_PHASE
Phase of the disease

WIMEDS

REQUEST_COUNTRY
Country requesting drugs

PERIOD_YEAR
Period (in years)

BTTL-ABARAX-BENZNIDAZOL-50
Num. of Abarax Benz. 50ml distributed

BTTL-ABARAX-BENZNIDAZOL-12
Num. of Abarax Benz. 12ml distributed

BTTL-NIFURTIMOX-LAMPIT-30
Num. of Nifur. Lampit 30ml distributed

BTTL-NIFURTIMOX-LAMPIT-100
Num. of Nifur. Lampit 100ml distributed

BTTL-NIFURTIMOX-LAMPIT-120
Num. of Nifur. Lampit 120ml distributed

UN Population

Country
Country

Year
Year of report

POPULATION-AGE-0-14%
Pop. aged 0 to 14 years old (percent)

POPULATION-AGE-60%
Pop. aged 60+ years old (percent)

POPULATION-DENSITY
Population density

POP-MID-YEAR-EST-MIL
Population midyear estimates (millions)

POPULATION
Population

POP-MID-YEAR-EST-FEMALE-MIL
Population midyear estimates (females)

POP-MID-YEAR-EST-MALE-MIL
Population midyear estimates (males)

UN Migrants

Country
Country

Year
Year of report

ASYLUM-SEEKERS-NUM
Asylum seekers, including pend. cases

INT-MIG-STOCK-PER
Int. migrant stock: both sexes (percent)

INT-MIG-STOCK-NUM
Int. migrant stock: both sexes (number)

INT-MIG-STOCK-FEMALE-PER
Int. migrant stock: female (percent)

INT-MIG-STOCK-MALE-PER
Int. migrant stock: male (percent)

OTHER-UNHCR-NUM
Other of concern to UNHCR

TOTAL-POPULATION-UNHCR-NUM
Total population of concert to UNHCR

CH_PR_16_DATE_TREAT_START
Date when the treatment started

CH_PR_16_#ABARAX_BTTL
Num. of Abarax bottles administered

CH_PR_16_#LAMPIT_BTTL
Num. of Lampit bottles administered

SEX-RATIO
Sex ratio (males per 100 females)

TOTAL-POPULATION-UNHCR-NUM
Tot. refugees and refugee-like situations

JSON JSON CSV CSV

ContinuousLegend Categorical Continuos/Categorical Textual

Fig. 1: Data sources and their corresponding variables

3.1 Data sources under consideration

Official country’s surveillance data (WIDP). One of the main sources
of NTD information is the country disease surveillance and monitoring sys-
tem. To support countries in such data collection tasks, WHO has provided a

4 https://www.who.int/chagas/en

https://www.who.int/chagas/en

10 Petar Jovanovic et al.

global WHO Integrated Data Platform (WIDP)5, powered by District Health
Information System 2 (DHIS2)6. Data coming from WIDP register either in-
dividual events (e.g., patience diagnosis and treatment, dwellings inspection)
or collective reports (e.g., total number of infected patients over a period of
time and at a certain territory, total number of administered drugs). In our
scenario, we focus on the individual diagnosis and treatment data of Chagas
disease patients at a country. WIDP provides data in JSON format, through
the variables reported in the first column of Figure 1.

Medicine distribution data (WIMEDS). In addition to WIDP, WHO has
also developed a system for tracking, planning, and monitoring medicine dis-
tribution between WHO and countries, or manufacturers and countries, i.e.,
WHO Integrated Medical Supplies System (WIMEDS)7, powered by Bonita-
Soft8. WIMEDS can provide data directly as a database extract (being an
internal WHO tool) or by means of a public API in JSON key-value format
(for external users), through the variables summarized in the second column
of Figure 1 .

Population and immigration data (from United Nations). Lastly, to
contextualize the analysis of the official data, we include part of United Na-
tion’s data9 referring to countries’ population and immigration. Notice that
this is important for monitoring the main indicators about the disease, which
are typically computed over the territory population or total number of poten-
tially affected people. UN data can be accessed through a public API and are
extracted as CSV/Excel files. They provide a set of variables yearly reported
on country’s population and country’s immigration (see last two columns of
Figure 1).

4 Quarry in Support of the Big Data Integration Lifecycle

In Quarry, we rely on a hypergraph-based metadata representation, which is
flexible and extensible enough to store different levels of detail, while at the
same time enabling automatic processing by means of graph traversals and
pattern matching queries. In this section, we primarily introduce the metadata
subsets used to automate the processing, as well as the high level workflows
of the big data integration lifecycle that Quarry supports.

5 http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_

Platform_(WIDP)
6 https://www.dhis2.org
7 http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Medical_

Supplies_System_(WIMEDS)
8 https://www.bonitasoft.com
9 http://data.un.org

http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_Platform_(WIDP)
http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Data_Platform_(WIDP)
https://www.dhis2.org
http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Medical_Supplies_System_(WIMEDS)
http://mss4ntd.essi.upc.edu/wiki/index.php?title=WHO_Integrated_Medical_Supplies_System_(WIMEDS)
https://www.bonitasoft.com
http://data.un.org

Quarry: A User-centered Big Data Integration Platform 11

4.1 Subsets of Metadata

To automate the processing of the data integration workflows, Quarry builds
on well-known data integration artifacts [13,31], and takes advantage of addi-
tional ones needed for dealing with the complexity of Big Data systems [51].
Hence, to deal with the abundance of external data sources and advanced
analytics pipelines, Quarry benefits from data-intensive flows that describe
and record data provenance and traceability in the platform, and service-level
agreements that store the preferred quality requirements set by end users. In
this section, we present each metadata subset considering their specific adap-
tation for the Quarry platform. Note that the presented list is intentionally not
exhaustive, as the metadata repository is easily extensible and could, for ex-
ample, include additional metadata such as data provenance (i.e., information
recording the steps used to derive any piece of data) among others.

Global schema. The global, or mediated schema encodes the domain of in-
terest and the semantics of the concepts and relationships of the underlying
data. Furthermore, Quarry uses the global schema (or parts of it) to expose
the underlying data in an integrated manner to the end user for posing queries
inside the platform (see Figure 2b). The format and complexity of the global
schema representation can vary, from full semantic solutions in terms of on-
tology (e.g., OWL [45]), to lighter solutions that represent basic concepts of
the conceptual schema for the domain at hand (e.g., UML [33]).

Source schemata. Also referred to as source descriptions, they define the core
properties of the sources that the system needs to be aware of. These properties
are, for instance, a list of variables that the source exposes, or annotations on
whether data can be considered as complete or not. In practice, the source
schema models and exposes the structure of the sources, and is used by the
data integration system to answer the individual queries over each data source.
Similarly to the global schema, source schemata can be represented in either
Relational or other more flexible non-Relational forms (e.g., graphs).

Schema mappings. Schema mappings connect the global schema with the
source schemata in a declarative way. These are traditionally categorized as
global-as-view (GAV), local-as-view (LAV), or the more general tuple-gener-
ating dependencies (GLAV); which directly determine how queries are pro-
cessed [18]. As discussed in more detail in Section 5.1, in Quarry, we use LAV
mappings to represent correspondences among source schemata and the global
schema, given their inherent flexibility in front of evolutionary changes at data
sources.

Wrappers. A wrapper implements an extraction program using the source-
specific query language, receives the answers and potentially applies some basic
transformations to them [19]. Automatic wrapper construction is a difficult
task (e.g., a web crawler that parses HTML pages and returns sets of tu-
ples), which is commonly tackled via machine learning techniques [32]. Hence,
one needs to usually account for incompleteness or approximate answers. In

12 Petar Jovanovic et al.

Quarry, the wrapper construction can be partially automated by means of
applying transformation rules [26] to generate extraction queries for the data
source at hand.

Data-intensive flows. Data-intensive flows (DIFs) are processes that deliver
data in user-preferred and analysis-ready formats, from a multitude of sources.
For DIFs, Quarry as well uses a hypergraph-based solution, where a DIF at a
logical level is represented as a directed acyclic graph (DAG), with its nodes
being either data stores or operations, and its edges representing a directed
data flow among the nodes of the graph [27]. Furthermore, Quarry relies on
the flow translation functionalities, like those presented in [29], to generate
an executable version of a DIF (i.e., eDIF) that can be run on the preferred
execution engine.

Service-level agreements. These are quality criteria, or non-functional re-
quirements, that specify the degree to which a certain property must be ful-
filled. In Quarry, we will focus on data management-oriented service-level
agreements (SLAs) [34] and use them in terms of maximization of a multi-
objective utility function with different weights for the components.

Rules. When considered in isolation, different data sources may have different
business rules to whom they must adhere. Some of these rules may seize to
hold, when different data get integrated with each other. However, some others
could span to hold even on the final integrated data. To this end, we aim for
the latter and those rules include: Funcional dependencies (FDs), Multi-valued
dependencies (MDs), or any kind of business rule that can be used in the
validation of data. Quarry uses these metadata to facilitate the automation of
data repairing/cleaning when violations occur. A typical case is for instance
when duplicates or inconsistencies with respect to some master data appear.

4.2 Big Data Integration Workflows

Importantly, Quarry considers different types of users interacting with the
platform during the data integration lifecycle, namely: (1) Domain Expert, a
user with a profound knowledge of the domain at hand (but usually no tech-
nical skills), who typically interacts with the platform by defining necessary
domain-specific metadata and resolving semantic ambiguities among consid-
ered data sources; (2) Data Steward, a technical IT user, who, assisted by
automated processes in the platform, creates the necessary infrastructure for
analysis specific data preparation (e.g., data flow implementation, execution
engine selection and configuration); and (3) Data Analyst, finally, is a user with
somewhat domain knowledge, expert statistical knowledge to decide the spe-
cific analysis of the data, but no technological skills to integrate and prepare
such data for the analysis.

Furthermore, we consider four core workflows that occur within the big
data integration lifecycle (see Figure 2), namely: (a) register new data source,
(b) explore data, (c) extend data flow, and (d) deploy data flow.

Quarry: A User-centered Big Data Integration Platform 13

(a) Register New Data Source

(b) Explore Data

(c) Extend Data Flow

(d) Deploy Data Flow

Fig. 2: Big Data Integration Lifecycle Workflows

14 Petar Jovanovic et al.

Register new data source (Figure 2a). The data integration workflow be-
gins by gathering and registering the data sources that will be considered. To
do so, the source-specific metadata, like schema of the data source, or format
and model conversion, need to be extracted. Furthermore, to guarantee that all
the information exposed from a new data source is available for querying, we
need to potentially update the global schema with new information. Besides
the updated global schema, in this step, we also discover how the data from
a new data source relate to our global schema, in terms of schema mappings.
These activities, are largely automated in our system, but may still require the
assistance of Domain Experts and Data Stewards to resolve semantic ambi-
guities occurred when matching a new source schema with the existing global
one for certain wrappers [35].

Explore data (Figure 2b). Once data sources are added to the platform, and
the necessary metadata are generated, the Data Analysts may start exploring
them in order to scrutinize their characteristics and relationships with other
data inside the platform. This will also allow to decide on his/her analysis of
interest. In a typical scenario, the Data Analyst poses a query in a domain-
specific language over the global schema, from which the execution plan (in
terms of a data flow) is returned. The query is then automatically resolved
and the corresponding data flow is executed over the sources to produce the
query results, which are then manually interpreted by the analyst and the
exploration may continue or be stopped if the analyst has found the analysis
facet of his/her interest. In addition, the Data Analyst, assisted by the tool
may extend the data flow with more complex data transformations and deploy
it for periodical execution with other data flows inside the platform. These
subprocesses are further explained in more detail.

Extend Data Flow (Figure 2c). While launching queries for exploring the
data, the Data Analyst may immediately want to apply some transformations
either with the aim of enabling the analysis, or improving it. The former
applies when due to some violations the analysis cannot be performed (e.g.,
inconsistent data) — Quarry facilitates the analyst by recommending repairing
transformations [11], if violations are detected. The latter however, is required
when the Data Analyst already wants to apply some transformations for the
sake of improving the results of his analysis. To this end, in the Data pre-
processing component, by learning from historical knowledge and knowing
the type of analysis (e.g., supervised learning problem), Quarry is able to
recommend additional complex transformations (e.g., feature selection) that
have potentially positive impact on the final analysis [5] (e.g., increase the
predictive accuracy of the supervised learning).

Deploy Data Flow (Figure 2d). After the users select their analysis and
trigger the materialization of the data, Quarry needs to deploy the materializa-
tion flows over executable engines to periodically obtain analysis-ready data
for the end user. First, given that a variety of users with similar analytical
needs may interact with the platform, data flow deployment starts by consol-
idating data flows coming from different users, finding shared data processing

Quarry: A User-centered Big Data Integration Platform 15

parts among the flows, and proposing a multi-flow execution. Such consolida-
tion is done automatically starting from the matching sources of data flows
and iteratively, in each step attempting to match more data flow operations,
possibly having to reorder their positions inside the flows. Consequently, each
found match extends the shared data flow part and guarantees its coincidence
among all the consolidated flows. The flows may be then further optimized,
by means of selecting the possible materialization of intermediate results, and
selecting specific formats in which data will be stored. Lastly, an execution
engine is selected for the input flow and it is translated into an executable
language ready for deployment. Throughout the complete workflow, the Data
Steward may be prompted to give technical support for the flow managing
tasks (e.g., selecting optimal materialization level or storage format), until the
flow is finally ready for the automatic execution over the selected engine.

In the following section, we present the functional architecture of Quarry.
We also report the application of each of Quarry ’s core modules to the NTD
use case introduced in Section 3, by referring to the data integration workflows
that the module implements.

Integration
Manager

Legend:

Data
Analyst

External
Data
Flow

Metadata
Flow

Data
Steward

Metadata Repository

Data sources

Flow
Manager

Data
Quality

Manager
Execution
Engines

Storage
Systems

Module

Storage
Module

Pluggable
ModuleInternal

Functional
Module Domain

Expert

Q

Q

Query
Manager

Fig. 3: Quarry Functional Architecture

5 Quarry ’s Functional Architecture

To support and automate the big data integration lifecycle, Quarry relies
on four core functional modules (i.e., Integration Manager, Query Manager,

16 Petar Jovanovic et al.

Data Quality Manager, and Flow Manager), which generate and use a set of
metadata artifacts stored inside the Metadata Repository (see Figure 3). In
addition, Quarry complements its functionality by connecting to a group of
external Execution Engines (e.g., Apache Spark10, or Apache Flink11) that
can be plugged into the platform to run previously generated data flows. Such
data flows produce the analysis-ready data that can be then stored in a variety
of external Storage Systems (e.g., Hadoop Distributed File System-HDFS 12,
a graph analytics system such as Neo4J13 or a Relational DBMS like Post-
greSQL14, among others), and be ready for further exploration by the data
analysts (e.g., OLAP analysis, graph analytics, classification and predictive
analysis, visualization, or publishing).

In the following subsections, we introduce in more detail the functional ar-
chitecture of Quarry, including metadata artifacts considered inside the Meta-
data Repository, as well as the core modules to support data management
workflows described in Section 4.2.

5.1 Metadata Repository

The Metadata Repository module is responsible of organizing the catalog of
metadata artifacts in Quarry. Such catalog sits at the core of the platform
and enables the large degree of automation of both, data exploration and
consolidation tasks, as well as efficiently bridging between them by reusing
the same concepts.

Graphs have been extensively used in scenarios where the relationships
topology of data is as important as the data themselves [3]. Hence, Quarry ad-
vocates for the use of hypergraphs to represent all metadata artifacts to au-
tomate the end-to-end integration process. Unlike other approaches that, for
example, combine data structures with logical rules for mappings, by using
graphs, we are capable of encoding all metadata artifacts in a single construct.
This yields significant advantages on simplicity, as the algorithms using this
constructs need only to be concerned with a single formalism.

Representing metadata using graphs also brings benefits in terms of ex-
pressiveness (i.e., the ability to express different representations, regardless of
their complexity), semantic relativism (i.e., the ability to accommodate differ-
ent representations of the same data) [26,41], as well as conciseness (because
of the possibility of reusing pieces of metadata information in different places
by just using edges connecting from/to them). Finally, graphs offer great flexi-
bility (i.e., the ability to easily add new metadata artifacts without modifying
the underlying data model), as well as query performance (since queries over

10 https://spark.apache.org
11 https://flink.apache.org
12 https://hadoop.apache.org
13 https://neo4j.com
14 https://www.postgresql.org

https://spark.apache.org
https://flink.apache.org
https://hadoop.apache.org
https://neo4j.com
https://www.postgresql.org

Quarry: A User-centered Big Data Integration Platform 17

metadata are commonly dominated by traversals, i.e., joins with low cardinal-
ity, which are particularly efficient in graph databases).

Metadata

HyperGraph

<<HyperEdge>>
Wrapper

<<HyperEdge>>
Subgraph of

Global

<<Node>>
Attribute

<<Edge>>
hasAttribute

<<Node>>
Feature

<<Edge>>
hasFeature

<<Node>>
Concept

<<Node>>
DataType

<<Edge>>
Succesors

<<HyperEdge>>
DIF

<<Node>>
Metric

*

1

1
*

1

<<stereotype>>
Node

<<stereotype>>
HyperEdge

<<stereotype>>
Edge

**

<<Node>>
Operator

<<Edge>>
hasDataType

1

*

* 1

<<Edge>>
sameAs

* 1

<<HyperEdge>>
SLA

*

* 1

1

1

1 * 11

1

1 <<Edge>>
hasRelationship

*

*

1

<<Node>>
Source

<<Node>>
Internal

<<Node>>
Sink

*

*

0..1

1

0..11

1

1

<<Node>>
Weight

<<Edge>>
hasWeight

1111

<<HyperEdge>>
Subgraph

Global Graph

Source Graph

Mappings Graph

DIFs Graph

SLAs Graph

Legend

<<HyperEdge>>
Mapping

11

1..*

1

1
*

<<metaclass>>
Class

* 2

contains

{redefines contains}

<<apply>>

1

<<Edge>>
hasIDFeature

Fig. 4: UML class diagram for the hypergraph-based metadata artifacts

Figure 4, depicts a UML conceptual schema showing the relationships be-
tween the different artifacts discussed in Section 4.1. We distinguish nodes,
hyperedges (i.e., nodes that define a generic node grouping) and edges (i.e.,
groups of only two nodes), in a generalized hypergraph structure. Next, we
discuss the details of each artifact.

Global graph. The global graph G represents the domain of interest of ana-
lysts in terms of concepts (i.e., classes) and features (i.e., class attributes hav-
ing a data type), which are linked with an edge labeled hasFeature. Then, an
edge labeled hasRelationship connects concepts with each other, which can
correspond to associations, specializations or aggregations. G is the unified in-

18 Petar Jovanovic et al.

terface for analysts to pose queries QG , which are represented as edge-patterns
without variables [2].

Source graph. The source graph S represents the schema of wrappers and
their attributes. We restrict wrappers to expose a flat structure of the sources
or a tree structure without arrays, hence the source graph S contains nodes
of type attribute, and others representing wrappers, that following the hyper-
graph model in [26], allow to encode inside the physical data structure (e.g.,
JSON document). Details of that encoding are omitted in the UML class dia-
gram for simplicity.

Mappings graph. The mappings graph M represents LAV schema map-
pings linking G and S. In the proposed hypergraph-based representation, LAV
mappings are formalized as subgraphs of G (i.e., hyperedges) at the wrapper
level. Note that, for the sake of simplicity, the associations between Subgraph
of Global and elements in G have been suppressed in Figure 4. Then, for each
attribute, M contains an edge labeled sameAs, which creates a connection
between the local attribute and its corresponding feature in G. This is par-
ticularly relevant in heterogeneous integration settings where attribute names
(externally defined in the wrappers) might differ from feature names (defined
in the global graph).

Data-intensive flows graph. A DIF is composed by a set of operators linked
via successor edges. A DIF operators can either be: (1) source nodes, which,
using the source-specific metadata (i.e., source graphs and wrappers) extract
data from data sources, (2) internal nodes, which besides the schema also
encode the operator’s semantics, and (3) sink nodes, which output data to a
target data store, corresponding to a set of global features, modeled to suit
the end user needs. Thus, we encode the DAG D corresponding to all DIFs.

SLAs graph. The graph of SLAs T encodes the different kinds of objective
functions in the form of a subgraph, too. These are further linked to DIF
elements, in order to characterize what are the characteristics to optimize
when executing DIFs or consolidating results. Given that a DIF can have
several sink nodes, an SLA is represented as a hypernode associated to a sink,
and composed of a set of metrics to optimize.

5.1.1 Use case: NTDs metadata

Here, we report on the metadata needed in the application of the NTD use
case.
Integration graph of the NTDs use case. In the top part of Figure 5,
we depict the global graph corresponding to the NTDs use case, specifically
focusing on disease diagnosis (per time and country), the medicines used in
their treatment, and when they have been distributed in the different countries,
including the information about the countries population and migrants. The
bottom depicts an example extract of a source graph, which for clarity of
representation includes only the WIDP diagnosis data. Here, we can see that

Quarry: A User-centered Big Data Integration Platform 19
So

ur
ce

 g
ra

ph
M

ap
pi

ng
s

gr
ap

h
G

lo
ba

l g
ra

ph

Wraper_WIDP_1

WIDP_Individual_diagnosis

GEN_PLACE_COUNTRY CH_PR_16_AGE CH_PR_16_DATE_TREAT_START CH_PR_16_DIAGNOSIS_DATE

CH_PR_BODY-WEIGHT CH_PR_16_#LAMPIT_BTTL

population immigrants %immigrants

Week

Month

Year

weekId

monthId

yearId

MedicineDistribution

Capsule

totalShipped

sameAs
sameAs

sameAs sameAs sameAs

sameAs

hasFeature

hasFeature

hasFeature

hasFeature

hasFeature

hasDate

hasCountry

requestedByhasFeature

distributedMedicine

treatment

subclassOf

hasAttribute

hasWrapper

forPeriod

ConceptLegend Feature Data source Wrapper Attribute

CH_PR_16_#ABARAX_BTTL

sameAs

name

Country

Date dateId

Medicine Bottle

#abarax-bottles

#lampit-bottles

age date_treatment weight

Diagnosis

LAV Mapping

Fig. 5: Example of metadata representation including global graph, source
graph for the diagnosis source, and corresponding mappings graph

the source exposed by the wrapper has a given set of attributes. Lastly, the
middle part depicts the mappings for the WIDP diagnosis data, consisting of
the sameAs edges connecting source graph attributes with the global graph.

Extract_1

Extract_2

Join_1 Proj_2 Load_1
UN data
migration

UN data
population

UNpop.country =
 UNmig.country

UNpop.year,
UNpop.country,
UNpop.population,
UNpop.migrants

Tailored
view 1

Legend Operator Successor

Fig. 6: DIF retrieving UN data

DIF graph to retrieve UN data. In Figure 6, we depict a DIF graph that
answers the user query for jointly retrieving UN data (e.g., for evaluating the
migration prevalence ratios in the country). We have two source nodes, namely
Extract 1 and Extract 2, using specific wrappers to read the data from the

20 Petar Jovanovic et al.

population and immigration datasets of UN, respectively. These data are then
joined and the needed fields are projected by the internal nodes, Join 1 and
Proj 2. Lastly, the DIF uses a sink node Load 1 to store the integrated data
into a materialized view tailored for the user needs.

SLA graph for querying UN data. Finally, for the DIF above, we define
an SLA graph (see Figure 7) to express that the user favors execution time
(i.e., efficiency of retrieving the results) over data freshness, which in the case
of UN data is not critical, being that the population and migration data are
updated annually.

SLA-query-time-UN

SLA hasWeight Metric Weight

Legend

Execution Time

60%

Freshness

40%

Fig. 7: SLA for querying UN data

Integration Manager

Legend:
External

Data
Flow

Metadata
Flow

Data sources

Module

Storage
ModuleInternal Functional

Module

Global Schema
Builder

Wrapper
Designer

Source Schema
Extractor

Mapping
Generator

Mappings
Graph

Wrapper Source
Graph

Global
Graph

Domain
Expert

Data
Steward

Metadata Repository

Functional
Component

Fig. 8: Integration Manager

Quarry: A User-centered Big Data Integration Platform 21

5.2 Integration Manager

This module is primarily in charge of supporting automatic data integration
by generating source-specific metadata when registering a new data source in
the platform (see Figure 2a). For data sources entering into the platform, many
of which come without any kind of schema information, Quarry, through its
Integration Manager (see Figure 8), provides support for incorporating them
in further analytical pipelines.

Given a source data model (e.g., relational, key/value, documents) and
its specific format (e.g., JSON, XML, CSV), the Wrapper Designer proposes
wrappers that deal with variety in the sources and convert their data into
a common unified model (see Section 5.1). Such wrappers allow the other
components in the data integration platform to access the data in a unified
manner [26]. Next, Quarry largely supports extraction of the wrapper’s schema
via the Source Schema Extractor component. This process can benefit from
existing information (e.g., database catalog, XSD schema), but it primarily
works over available data instances to incrementally extract schema informa-
tion using model driven transformations [48]. Such source schema information
is expressed in the source graph.

Quarry further supports an incremental, bottom-up construction of the
global graph for the domain at hand, directly from data sources and the ex-
tracted source graphs. For such task, it provides the Global Schema Builder
component which relies on semi-automatic schema alignment and merging pro-
cess [50,40], which, backed by domain experts produces a knowledge base with
the vocabulary oriented to end users of the system. The alignments are found
by means of applying state of the art techniques for ontology alignment, which
besides lexical matching in terms of Jaccard index, also uses Wordnet as a syn-
onym base. The candidate matchings are then ranked based on the confidence
level, representing the degree of similarity between the concepts, and can be
accepted or rejected by the user. Global Schema Builder as well offers an in-
tuitive interface allowing manual definition of additional matchings. Lastly,
in order to rewrite queries expressed over the global graph, Quarry requires
the correspondences between data sources and the global graph. As previously
mentioned Quarry uses mappings to relate each variable of the source graph
retrieved by the wrapper to the global graph, based on LAV approach. Build-
ing of such mappings graph is done by the Mapping Generator and it naturally
comes as a side-product of finding the alignments between the source and the
global graph [50,35]. That is, whenever a matching of the source concept with
the global schema is found and accepted by the user, Mapping Generator first
defines sameAs edges to all the mapped concepts in the global graph. Then,
starting from the mapped concepts in the global graph, it defines the LAV
mapping by discovering the possible integration paths among the global graph
concept. Such process may require user intervention for resolving ambiguities
(e.g., multiple paths between the concepts), and as well allows the user to
manually record such LAV mappings in the metadata repository.

22 Petar Jovanovic et al.

As a result, the Integration Manager module builds and maintains the
integration graph (see example in Figure 5), which resolves possible semantic
conflicts among a variety of data sources, thus enabling the automated data
integration and query processing.

5.2.1 Use Case: Registering New Data Source

Here, we report on the application of the NTD use case over the Integration
Manager module for registering a new source (see Figure 2a).

Quarry: A User-centered Big Data Integration Platform 21

Alberto: The example of SLA needs to be fixed to be consistent with the metadata def-
inition. Query cost and freshness are actually metrics (also, may be better to use execu-
tion time, instead of query cost, to be consistent with the unit ms in the corresponding
value). Then, Target should be property hasTarget, which is then reified to be part of
the SLA.

SLA graph for querying UN data. Finally, for the DIF above, we define
an SLA graph (see Figure 7) to express that the user favors the query time
(i.e., efficiency of retrieving the results) over the data freshness, which in the
case of UN data is not critical, being that the population and migration data
are updated annually.

{"events":[
{"storedBy":"chagas.countryOfficer", "dueDate":"2018-11-09T15:39:27.202",
"program":"H_D_PR_HMO16_INDIVIDUAL -DIAGNOSIS","status":"COMPLETED",
"orgUnitName":"Kingdom of Spain", "eventDate":"2010-02-09T00:00:00.000",
"coordinate":{"latitude":0.0,"longitude":0.0},
"dataValues":[
{"CH_PR_16_#LAMPIT -BOTTLES":"3"},
{"CH_PR_16_LAMPIT -NIFURTIMOX":"Yes"},
{"CH_PR_16_#ABARAX -BOTTLES":"0"},
{"CH_PR_16_DATE -TREATMENT -START":"2010-01-01"},
{"CH_PR_16_MEDICINE -REQUEST -REFERENCE":"100010"},
{"CH_PR_16_NON -ANTIPARASITIC -TREATMENT":"Yes"},
{"CH_PR_16_DISEASE -PHASE":"CHRONIC"},
{"GEN_PLACE_Infection_OU_T":"cpmmPDsQ3uG"},
{"CH_PR_16_TRANSMISSION -ROUTE":"VECTORIAL"},
{"GEN_PLACE_Birth_OU_T":"Bolivia"},
{"CH_PR_16_BODY -WEIGHT":"74"},
{"CH_PR_16_AGE":"37"},
{"GEO_DE_ADDRESS":"Av.Drassanes, 17-21, 08001"},
{"GEN_PLACE_OU_T":"DUgfII2clbi"},
{"CH_PR_16_HEALTHCARE -CENTER -NAME":"Medicina Tropical y Salud Internacional

Drassanes"}]},
...]}

5.2 Integration Manager

This module is primarily in charge of supporting automatic data integration
by generating source-specific metadata when registering a new data source in
the platform (see Figure 2a). For data sources entering into the platform, many
of which come without any kind of schema information, Quarry, through its
Integration Manager (see Figure 8), provides support for incorporating them
in further analytical pipelines.

Given a source data model (e.g., relational, key/value, documents) and
its specific format (e.g., JSON, XML, CSV), the Wrapper Designer proposes
wrappers that deal with variety in the sources and convert their data into
a common unified model (see Section 5.1). Such wrappers allow the other
components in the data integration platform to access the data in a unified
manner [23]. Next, Quarry largely supports extraction of the wrapper’s schema
via the Source Schema Extractor component. This process can benefit from
existing information (e.g., database catalog, XSD schema), but it primarily
works over available data instances to incrementally extract schema informa-
tion using model driven transformations [44]. Such source schema information
is expressed in the source graph.

Fig. 9: Individual diagnosis data from WIDP in original JSON format

Extract source specific metadata. An example of a source graph, ex-
tracted from WIDP’s individual diagnosis dataset, is depicted in the bottom
of Figure 5. The WIDP source graph is extracted by parsing the sample of in-
put JSON files obtained from WIDP API. In addition, the Wrapper Designer
component generates a source-specific wrapper (Wrapper WIDP1) in order to
convert the JSON format of WIDP (see Figure 9) into a common tabular
format. Obviously, depending on the data source, the complexity of such con-
version can vary and certain transformation may require user involvement.

Create/update global graph. Starting from the WIDP and WIMEDS
source graphs, whose variables are depicted in Figure 1, Global Schema Builder
searches for the alignments between the extracted source concepts and the
global graph. Notice that while we start here with an existing (potentially
incomplete) global graph for NTDs, Global Schema Builder also allows to
start creating a global graph from scratch. In that case, a source graph of
the first data source (e.g., WIDP) will directly constitute the initial global
graph. In Figure 10, we respectively depict the resulting matchings for WIDP

Quarry: A User-centered Big Data Integration Platform 23

Global graphWIDP Confidence

Date dateIdCH_PR_16_DIAGNOSIS_DATE 33%

Date dateIdCH_PR_16_DATE-TREAT-START 25%

Country nameGEN_PLACE_COUNTRY 33%

Diagnosis date_treatmentCH_PR_16_DIAGNOSIS_DATE 67%

Diagnosis date_treatmentCH_PR_16_DATE-TREAT-START 50%

Diagnosis weightCH_PR_16_BODY-WEIGHT 33%

Diagnosis ageCH_PR_16_AGE 50%

Diagnosis #abarax-bottlesCH_PR_16_#ABARAX-BTTL 67%

Diagnosis #lampit-bottlesCH_PR_16_#LAMPIT-BTTL 67%

Global graphWIMEDS Confidence

Year yearIdPERIOD_YEAR 33%

Medicine #abarax-bottlesBTTL-ABARAX-BENZNIDAZOL-12 40%

Country nameREQUEST_COUNTRY 33%

Medicine #abarax-bottlesBTTL-ABARAX-BENZNIDAZOL-50 40%

Medicine #abarax-bottlesBTTL-ABARAX-BENZNIDAZOL-100 40%

Medicine #lampit-bottlesBTTL-NIFURTIMOX-LAMPIT-30 40%

Medicine #lampit-bottlesBTTL-NIFURTIMOX-LAMPIT-120 40%

Fig. 10: Resulting alignments for WIDP and WIMEDS source graphs

and WIMEDS data sources, which are found by Global Schema Builder, to-
gether with the found confidence levels. Notice that although very efficient, the
automatic alignment may not always yield the correct matching (e.g., see in
Figure 10 that CH PR 16 DIAGNOSIS DATE matches Diagnosis->date treatm-

ent with confidence of 67% while the correct one CH PR 16 DATE-TREAT-START

matches it with lower confidence of 50%). Nevertheless, Global Schema Builder
prompts the user all the matched alternatives for the approval before it con-
tinues processing. Notice that Global Schema Builder could automatically find
16 different matchings for WIDP and WIMEDS data sources (see Figure 10),
with different confidence levels, while the user had to intervene and reject 2
matchings (i.e., date mismatches: CH PR 16 DIAGNOSIS DATE 6= Diagnosis ->

date treatment and CH PR 16 DATE-TREAT-START 6= Date -> dateId).

Add mappings. Finally, as a result of each matching between the WIDP
source graph and the global NTD graph, either automatically found or man-
ually defined by the user in Global Schema Builder, the Mapping Generator
component further adds a sameAs edge to connect the WIDP source concept
to the global graph, allowing then recording of the LAV mappings for those
concepts (see Figure 5).

24 Petar Jovanovic et al.

5.2.2 Evaluation

Following from the examples reported above, we can see that Quarry highly
automates the processes essential to facilitate registering of a new data source
in the data integration system, namely the extraction of the source metadata
and creation of the global graph. A more detailed evaluation of the Global
Schema Builder module, using the identical set of data sources as introduced
in Section 3.1, is reported in [40], showing an average precision of 58.5% and
100% recall achieved when finding the alignments for the WIDP, WIMEDS,
and the two UN data sources. Furthermore, while for 79% of all source concepts
Quarry found the matching automatically, the user had to intervene and man-
ually define four matchings in total and reject other eight, through an intuitive
graphical interface. Indeed, as reported also in [40], user satisfaction with the
usability of the provided graphical assistance for manually defining the meta-
data objects is considerably high. More than half of the users (56.3%) qualified
the process as very easy, while the rest found it to be moderately hard. Re-
garding the individual tasks, only 12.5% had to invest more significant effort
for extracting source metadata and 6.3% faced some difficulties when creating
the global graph. Nevertheless, notice that such manual efforts are typically
done only once when registering the data source, while the resulted metadata
are later continuously reused for automating query processing in the rest of
the platform.

Data sources

Query Manager

QR
Query

RewriterQG

Mappings
Graph

WrapperGlobal
Graph

Source
Graph

DIFs

Metadata Repository
Execution
Engines

Q

Execution
Engine

Deployment
Engine
Selector

eDIFs

R

Legend:
Internal

Data
flow

Metadata
flow

Module

Storage
ModuleExternal

Functional
Module Functional

Component

Pluggable
Module Data

analyst

Data Flow
Creator

Execution
EngineExecution

Engine

Fig. 11: Query Manager

Quarry: A User-centered Big Data Integration Platform 25

5.3 Query Manager

Quarry ’s Query Manager module supports data analysts by providing an intu-
itive graphical interface with functionalities to visually guide the user into ex-
ploring the domain at hand and searching for particular insights. For that pur-
pose, the Query Manager conveniently exploits previously created hypergraph-
based metadata from the Metadata Repository for enabling end user’s interac-
tion with the system. Having a variety of external and evolving data sources at
hand, we require an efficient query mechanism so that end users and domain
experts can, on-demand, query and scrutinize the underlying data. This ex-
ploration allows a manual evaluation to decide their usefulness and relevance
for the analytical tasks, and once the analysis of interest is clear, decide if
and how to materialize the results of such query considering the SLAs (see
Figure 2b).

Query Manager supports the data exploration workflow via query answer-
ing techniques over the global schema. Hence, the task here consists of deal-
ing with the automatic translation (i.e., rewriting) of a query over the global
schema into queries over the data sources. To this end, the Query Rewriter
component takes as input a query QG posed by the data analyst over the
global graph. Recall that Quarry adopts LAV mappings, which are well known
to result in a complex reasoning task for query rewritting. Yet, given that
Quarry works under Closed World Assumption (CWA) dismissing the need
to deal with incompleteness on the sources, we guarantee that the problem is
tractable in practice [36]. Intuitively, the Query Rewriter component identifies
integration paths between the queried concepts (i.e., paths that connect two
queried concepts of the global graph through the mappings and source graphs
concepts), and outputs a set of rewritten queries QR (i.e., a union of con-
junctive queries). For each rewritten query, the Data Flow Creator component
generates a DIF being able to answer the user query and retrieve the needed
data to the Data Analyst.

http://who.int/name http://who.int/population http://who.int/numberimmigrants

Afganistan 36370000 87119

Albania 2930000 113

Algeria 42010000 94248

American Samoa 60000 null

Andorra 80000 null

Angola 30770000 48232

Anguilla 20000 null

Antigua and Barbuda 100000 1

Argentina 44690000 3322

Armenia 2930000 17922

Aruba 110000 1

Fig. 12: Excerpt of the Query 1 results

26 Petar Jovanovic et al.

Notice that the Query Manager can return the resulting data in a tabular
form, like that in Figure 12, which is suitable for quick visualization during
the exploration phase, as well as for importing into an external data analysis
and visualization tool for further exploitation. However, Quarry also provides
means to adapt the target data model suitably to the type of the analysis set
by the user, and in case that for example the user chooses to perform OLAP
analysis, the DIF could output data in a multidimensional model (e.g., star
schema) suitable for loading into an OLAP engine [28].

Lastly, through the Deployment Engine Selector component, the Data
Steward assists the Data Analyst in choosing the optimal execution engine
and preparing logical DIFs for execution in a selected engine and returning
the results. Part of such process is automated using engine-specific translations
to produce executable DIFs (i.e., eDIFs) [29].

Notice that Query Manager stays at the schema level when it comes to
integration, meaning that it does not resolve possible value level conflicts or
other data quality issues. Nevertheless, Quarry allows users to further extend
the resulting DIFs using its Data Quality Manager module (Section 5.4), and
address such problems.

5.3.1 Use Case: Data Exploration

Here, we report on the application of the NTD use case over the Query Man-
ager module for data exploration (see Figure 2b).

Query data. In this use case, Query Manager adopts the existing WebVOWL
tool15, which, consuming the previously created global graph from the Meta-
data Repository, visualizes the NTD domain and enables end users to navigate
and pose queries. In particular, the Data Analyst may first explore the NTD
domain, and zoom in to particular part of the domain of interest (e.g., Diag-
nosis data). In addition, and especially in the case of large graphs which are
expected in many domains, the user can also do a keyword search provided
by the WebVOWL tool to easily refocus the view to the part of the graph of
interest and start exploring from there. Using the same interface, the user can
then select the concepts he/she is interested in and start querying.

Query 1: A user may be interested to first integrate and explore the two
datasets of UN about countries’ population and migration to those countries,
in order to analyze which portion of the population in a country is made
by migrants. This is an important information in the analysis of NTDs, as
for many of them (e.g., Chagas) prevalence depends on countries. Given that
both sources have LAV mapping to the Country concept of the global graph,
the Query Manager integrates these sources on the Country->name feature
and jointly retrieves for each country the population and migration counts.
The excerpt of the results of Query 1 is presented in Figure 12. Notice that
source data may not always come with a good quality (e.g., see null values).

15 WebVOWL:Web-based Visualization of Ontologies - http://vowl.visualdataweb.org/
webvowl.html

http://vowl.visualdataweb.org/webvowl.html
http://vowl.visualdataweb.org/webvowl.html

Quarry: A User-centered Big Data Integration Platform 27

Nevertheless, Quarry through its Data Quality Manager module (see Section
5.4) allows users to address such issues.

Extract_1

UN data
migration

WIMEDS
UNpop.country = WIMEDS. requestCountry
and UNpop.year = WIMEDS.period

UN data
population UNpop.country = UNmig.country

UNpop.year,
UNpop.country,
WIMEDS.ABRAX12,
WIMEDS.ABRAX50

Data
analyst

Extract_2

Extract_3

Join_1

Join_2 Proj_1

Fig. 13: DIF to answer Query 2

Query 2: Continuing the exploration, the same or another Data Analyst
may now be interested in crossing these demographic data with medicine
distribution data extracted from WIMEDS (see Figure 1). When searching
for integration paths among these concepts (i.e., MedicineDistribution and
Country), Query Rewriter, using previously defined LAV mappings, encoun-
ters that the integration (i.e., join) can be done over Country->name and
Year->yearID features (i.e., the two data sources should be matched on time
and space dimensions). In Figure 13, we depict the DIF generated entirely
automatically to answer Query 2.

5.3.2 Evaluation

Following from the examples above, we can observe that once having the meta-
data objects prepared, Quarry can exploit the Global and Source graphs to-
gether with their corresponding mappings, and created data source wrappers,
to automatically resolve user queries and generate DIFs that return analysis-
ready data. Although it follows the LAV mappings approach, Query Manager
stays tractable in integrating data when answering user queries, due to the
CWA consideration discussed above. In fact, as [36] reports, the cost of the
algorithm behind the Query Rewriter component derives from the complex-
ity of wrapper mechanism and yields exponential growth with the number of
wrappers. However, for realistic scenarios with tens of wrappers it stays within
tractable bounds.

28 Petar Jovanovic et al.

Data sources

Data Quality Manager

DIFs

Metadata Repository
Execution
Engines

Q

Execution
Engine

R

Legend:
Internal

Data
flow

Metadata
flow

Module

Storage
ModuleExternal

Functional
Module Functional

Component

Pluggable
Module Data

analyst

Transformation
Palette

Execution
EngineExecution

Engine

Error/Violation
Detection

Data Flow Extendor

Data Repairing

Data Pre-
processing

Rules

Fig. 14: Data Quality Manager

5.4 Data Quality Manager

Given that user queries in Quarry result in DIFs that automatically extract
data from different data sources and integrate them into a unified view, ad-
ditional (instance-based) transformations may need to be added to the initial
DIF to support a variety of data processing tasks; some related to improv-
ing the overall quality of resulting data and thus enabling the analysis (e.g.,
deduplication, inconsistency detection), and others related to data prepara-
tion, specifically tailored to user analysis facets (e.g., discretization, outlier
detection). In addition, especially during the data exploration phase, the Data
Analyst may as well choose to sample the resulting data and obtain a briefer
overview of the data before choosing the actual analytical facet.

In the Data Quality Manager module, the Data Analyst may simply select
such transformations from the existing palette, or whenever applicable he/she
may get assistance, in which case the recommended transformations are ranked
according to their relevance for the problem at hand.

For instance, in the Data Repairing component, given some rules and a
master data to refer to, the Data Analyst may receive support through recom-
mendations which suggest him/her to complement the missing data, remove
the data that has been identified as duplicate, or given some integrity con-

Quarry: A User-centered Big Data Integration Platform 29

straints he/she may be asked how to handle the detected inconsistent rows.
Note that this is agnostic to the type of analysis to be performed.

Finally, once errors are detected and repaired, and the data is ready to
be analyzed, in the Data Pre-processing component the Data Analyst receives
recommendations of complex transformations that intend to positively impact
the final analysis. To this end, Quarry takes into account the type of analysis
to be performed and uses a meta-learning approach [6] to recommend transfor-
mations that are ranked according to their impact on the final analysis. Hence,
transformations that are expected to improve the analysis (e.g., increase the
predictive accuracy of a classification algorithm) are ranked higher in the list.

Extract_1

UN data
migration

WIMEDS
UNpop.country = WIMEDS. requestCountry
and UNpop.year = WIMEDS.period

UN data
population UNpop.country = UNmig.country

UNpop.year,
UNpop.country,
WIMEDS.ABRAX12,
WIMEDS.ABRAX50

Extract_2

Extract_3

Join_1

Join_2 Proj_1

Country_lookup

Country
dictionary

Aggr_1 Load_2
UNpop.year,
SUM(WIMEDS.ABRAX12),
SUM(WIMEDS.ABRAX50)

Tailored
view 2

(a) Extension for descriptive analysis

Extract_1

UN data
migration

WIMEDS
UNpop.country = WIMEDS. requestCountry
and UNpop.year = WIMEDS.period

UN data
population UNpop.country = UNmig.country

Extract_2

Extract_3

Join_1

Join_2 Proj_1

Country_lookup

Country
dictionary

Miss_value_imp Load_3 Tailored
view 3

UNpop.year,
UNpop.country,
UNpop.population,
UNpop.migrants
WIMEDS.ABRAX12
WIMEDS.ABRAX50

(WIMEDS.ABRAX12==NULL)?
mean([WIMEDS.ABRAX12]):
WIMEDS.ABRAX12;
(WIMEDS.ABRAX50==NULL)?
mean([WIMEDS.ABRAX50]):
WIMEDS.ABRAX50

Legend Automatically added
operator

Semi-automatically added
repairing operator

Semi-automatically added
pre-processing operator

(b) Extension for predictive analysis

Fig. 15: Extended DIF for Query 2

5.4.1 Use Case: Data Flow Extension

Here, we report on the application of the NTD use case over the Data Quality
Manager module for data flow extension (see Figure 2c).

Extend data flow. Given that the underlying data for answering Query 2

are coming from two independent data sources (i.e., UN data and WIMEDS),
the country names, which are on one of the proposed integration paths, may
differ (e.g., Kingdom of Spain as official UN name and Spain as a standard
short name, or similarly, Bolivarian Republic of Venezuela and Venezuela). To
resolve these mismatches, the analyst may add some data repairing transfor-
mation from the palette (e.g., a dictionary lookup for unifying country names -
Country Lookup in Figure 15). In addition, analysts may as well decide to push
some of the transformations from their analytics flow to the DIF. For example,

30 Petar Jovanovic et al.

a user may be interested in performing descriptive (OLAP) analysis, and group
resulting data per year, aggregating the medicine quantities to report on the
total quantity of shipped medicines in particular years, irrespectively of the
country. Note that such aggregation addition may be done after producing the
initial flow like here or even from the very beginning by expressing this need
in the user information requirement. The resulting, extended DIF for Query
2 is depicted in Figure 15a. The same or another user may be interested in
making predictive analysis on the quantity of specific medicines needed for
a country in the following years. Based on such a requirement, Quarry may
suggest to the user to extend the flow with a data pre-processing transfor-
mation that could positively impact the final analysis (e.g., Miss value imp,
using the attribute mean to complete the dataset; see Figure 15b). Notice that
Quarry may as well propose other data pre-processing transformations (e.g.,
discretization, outlier detection) specific to a final data analysis [6].

5.4.2 Evaluation

We can observe from our use case above that Quarry provides flexibility to
end users to fine tune the resulting DIFs and extend them for improving the
data quality. While on the one hand, Data Quality Manager provides a prede-
fined palette of possible data reparation transformations to be manually added
to the flow, Quarry can also assist users to more effectively identify the pre-
processing operators appropriate to their analytical applications, and improve
the predictive power of the analytical algorithms. Specifically, based on more
detailed evaluation of the meta-learning algorithm behind the Data Quality
Manager module reported in [6,7], we were able to observe that: (a) even if
a user randomly picks a transformation from the entire list of transforma-
tions ranked by Data Quality Manager, our meta-learning algorithm results in
a good transformation with an average accuracy of 61%, (b) recommending
only the top-1 transformation, increased the accuracy to 68%, (c) measuring
the gain obtained from our ranking for all transformations using Discounted
Cumulative Gain (DCG), we were as close as 73% on average to the gain ob-
tained from the best possible ranking of transformations, (d) measuring the
gain from the top-1 recommendations using DCG, we were as close as 79%
on average to the gain obtained from the best possible ranking , and (e) in a
set of randomly selected classification problems, Quarry performed 2.5 times
better than humans.

5.5 Flow Manager

Having DIFs resulting from several analysts’ queries, previously processed by
the Query Manager, Quarry provides the Flow Manager module, in charge of
organizing the deployment of such DIFs and their (periodical) execution over
the available engines (see Figure 16).

Quarry: A User-centered Big Data Integration Platform 31

Storage
Systems

Execution
Engines

Data sources

Flow Manager

Materialized View
Selector

Format Selector

Multi-flow
Consolidator

Deployment
Engine Selector

DIFs

SLAs eDIFs

Execution
Engine Tailored

view

Legend:
External

Data
Flow

Metadata
Flow

Module

Storage
ModuleInternal

Functional
Module

Data
Steward

Functional
Component

Pluggable
Module

Q

Metadata Repository

Data
Analyst

Analysis-ready
data

Tailored
view Tailored

view

Execution
EngineExecution

Engine

Fig. 16: Flow Manager

In particular, Flow Manager, through the Multi-flow Consolidator com-
ponent, searches for possible shared data processing operators among DIFs
coming from different analysts in the system. To maximize the potential over-
lapping among the flows, it applies various flow transformations (e.g., opera-
tion reordering, merging or splitting) [27]. Once the overlapping data process-
ing parts are identified, the DIFs are consolidated and a multi-flow execution
is proposed for them. Multi-flow Consolidator is generic in terms of the cost
model that is used for creating a multi-flow. For example, we can maximize re-
source usage by finding maximal overlaps, but this may result in penalizations
for some DIFs, because their filtering operations with high selectivity may be
pulled towards the end of the DIF. Furthermore, to address other quality fac-
tors, typically described as SLAs (e.g., data freshness, storage space, response
time), some of which may be conflicting, the Flow Manager employs a com-
ponent called Materialized View Selector. Given a specific SLA, Materialized
View Selector finds the optimal materialization of intermediate results [34].
Intuitively, for input DIFs, Materialized View Selector decides where to “cut”
the flow, i.e., for which part of the flow to materialize the data before hand
and which part to leave for on-demand querying.

Lastly, once the logical data flow is built and the data materialization level
is selected, the Flow Manager prepares the flow for execution by focusing on
the physical characteristics. Namely, Flow Manager provides two components
dealing with physical, engine-specific, characteristics of DIFs, i.e., Format Se-
lector and Deployment Engine Selector. For the data selected for material-

32 Petar Jovanovic et al.

ization, the Format Selector component selects the optimal layout in which
the data will be stored on the disk, which can significantly reduce the I/O
costs [34], while similarly to the Query Manager module, through Deployment
Engine Selector, the Data Steward assists in choosing the optimal execution
engine for executing the DIFs. As a result, a set of eDIFs are prepared, by
means of data flow translations [29], to be sent to a selected execution engine,
finally resulting in data prepared for exploitation (i.e., analysis-ready data).

Extract_1

UN data
migration

WIMEDS
UNpop.country = WIMEDS. requestCountry
and UNpop.year = WIMEDS.period

UN data
population

UNpop.country =
UNmig.country

Extract_2

Extract_3

Join_1

Join_2 Proj_1

Country_lookup

Country
dictionary

Aggr_1 Load_2
UNpop.year,
SUM(WIMEDS.ABRAX12),
SUM(WIMEDS.ABRAX50)

Tailored
view 2

Legend

Miss_value_imp Load_3 Tailored
view 3

UNpop.year,
UNpop.country,
UNpop.population,
UNpop.migrants
WIMEDS.ABRAX12
WIMEDS.ABRAX50

(WIMEDS.ABRAX12==NULL)?
mean([WIMEDS.ABRAX12]):
WIMEDS.ABRAX12;
(WIMEDS.ABRAX50==NULL)?
mean([WIMEDS.ABRAX50]):
WIMEDS.ABRAX50

Automatically added
operator

Semi-automatically added
repairing operator

Semi-automatically added
pre-processing operator

Proj_2 Load_1 Tailored
view 1

Materialized
view

UNpop.year,
UNpop.country,
UNpop.population,
UNpop.migrants

Fig. 17: Multi-flow DIF answering both Query 1 and Query 2

5.5.1 Use Case: Data Flow Deployment

Here, we report on the application of the NTD use case over the Flow Manager
module for deploying data flows (see Figure 2a).

Consolidate data flow. Once DIFs to answer user queries are defined by
Query Manager (see Figures 6 and 13), and extended by Data Quality Man-
ager (see Figure 15), a user can decide to deploy the DIFs for future view ma-
terialization. Flow Manager then first searches for consolidation of the flows to
propose their multi-flow execution. An example of such multi-flow for Query 1
and Query 2 in our NTD use case is depicted in Figure 17. Notice that part
of the multi-flow that integrates two datasets of the UN data source is com-
mon for answering both queries, thus its results can be reused. Furthermore,
both DIFs extended by Data Quality Manager from the DIF that answers
Query 2 (see Figures 15a and 15b) reuse the same base data flow to integrate
UN data and WIMEDS. The iterative search for consolidating DIFs would
then go from the common data sources (i.e., extraction operations Extract 1

and Extract 2) following the overlapping operations and stop when no further
overlap between DIFs can be found, in which case the multi-flow would create
a split (i.e., see operations Join 1 and Proj 1 in Figure 17). Now, let us con-
sider a slight modification of Query 1, i.e., Query 1′, where user is interested
in analyzing migration from UN data, but only for a subset of European coun-
tries. In such case, the DIF for answering Query 1′ would in addition require

Quarry: A User-centered Big Data Integration Platform 33

filtering operator to retrieve only European countries’ population and then
join them with migration data (see Figure 18). Consequently, we would not be
able to find the straightforward overlap as in the previous case, having that
DIF for Query 2 does not require such country filtering. Nonetheless, Multi-
flow Consolidator would still proceed to find the maximal possible overlap. In
particular, it would first apply DIF transformation and reorder the filter after
Join 1, such that the DIFs could then be matched as in the previous case,
creating the split after Join 1.

Extract_1

UN data
migration

WIMEDS
UNpop.country = WIMEDS. requestCountry
and UNpop.year = WIMEDS.period

UN data
population

UNpop.country = UNmig.country

Extract_2

Extract_3

Join_1

Join_2 Proj_1

Country_lookup

Country
dictionary

Aggr_1 Load_2
UNpop.year,
SUM(WIMEDS.ABRAX12),
SUM(WIMEDS.ABRAX50)

Tailored
view 2

Legend

Miss_value_imp Load_3 Tailored
view 3

UNpop.year,
UNpop.country,
UNpop.population,
UNpop.migrants
WIMEDS.ABRAX12
WIMEDS.ABRAX50

(WIMEDS.ABRAX12==NULL)?
mean([WIMEDS.ABRAX12]):
WIMEDS.ABRAX12;
(WIMEDS.ABRAX50==NULL)?
mean([WIMEDS.ABRAX50]):
WIMEDS.ABRAX50

Automatically added
operator

Semi-automatically added
repairing operator

Semi-automatically added
pre-processing operator

Materialized
view

Proj_2 Load_1 Tailored
view 1

UNpop.year,
UNpop.country,
UNpop.population,
UNpop.migrants

Filter_1
UNpop.country.parent = Europe

Filter_1

UNpop.country.parent = Europe

DIF
transformation

Fig. 18: Multi-flow DIF answering Query 1′ and Query 2

Optimize data flow. Next, given the frequency of the reports (e.g., weekly,
monthly or yearly) and the need for timely answering such reports (repre-
sented as SLAs; see Section 5.1), Flow Manager decides to materialize the
results of some of the operations of the multi-flow (see dashed-lined rectangles
in Figure 17). In particular, given that for Query 1 a user is interested in im-
proving the query cost while the freshness is not critical, and having that UN
only yearly updates such information, the Materialized View Selector compo-
nent chooses to materialize the result of Proj 2 operator. However, in addition
to query cost, SLA for Query 2 also requires improving the freshness of the
results, and thus, the costly Join 2 operator is chosen for materialization,
while setting up the frequency of flow execution to weekly, in order to timely
bring potentially new WIMEDS data. Lastly, the Format Selector component
chooses to store such materializations following the optimal storage layout in
HDFS, in this case Parquet format.

Select execution engine. At the end, to execute such flows, we need to
select an optimal execution engine(s) using the Deployment Engine Selector
component. In this case, Apache Spark was selected, in order to provide fast,
in-memory, distributed data processing. Thus, the resulting multi-flow DIF
needs to be translated into an executable format suitable for the selected
engine (i.e., the Java version of Apache Spark). Alternatively, we could as well
choose Scala for executing the same DIF.

34 Petar Jovanovic et al.

5.5.2 Evaluation

Observing the examples above, we can see how Quarry closes the big data in-
tegration lifecycle by generating and deploying data flows to efficiently answer
user queries and prepare the data for further exploitation. In addition, the
algorithm for consolidating DIFs has been evaluated in terms of the number
of queries that a multi-flow needs to answer [27]. Given the limited number
of alternative DIF transformations, having that they all must produce equiva-
lent results for all DIFs, Multi-flow Consolidator yields linear execution times
depending mainly on the complexity of the input DIFs. At the same time, per-
formance gains of such multi-flow execution are estimated to be 17.8-31.9%,
advocating strongly for the benefits of such deployment of DIFs. Material-
ized View Selector also estimates the materialization decision to be tractable
in practice, and besides the size of a DIF, also depends on the number of
involved metrics and how conflictive they are [34] (e.g., freshness vs. query
time).

6 Conclusions and Future Work

In this paper, we have presented Quarry, a Big Data integration platform
for managing data integration and preparation tasks, offering at the same
time a user-friendly query interface for expressing analytical needs. Indeed,
Quarry advocates a comprehensive architectural view and proposes the four
core functional modules for facilitating different steps in the big data inte-
gration lifecycle, including: (1) registering a new data source and making it
available for the end user, (2) exploring the available data and selecting the
analytical facet of interest, (3) deploying data flows to efficiently integrate and
prepare data for further analysis, and (4) extending such data flows to address
potential data quality issues or enable user-preferred analytical tasks. More-
over, we also discuss the potential for automating each of the proposed modules
by means of exploiting metadata artifacts, for which we propose a compact
hypergraph-based metadata model encompassing the entire platform.

We validate Quarry over a real world project, covering the domain of fight-
ing Neglected Tropical Diseases at the World Health Organization. We thus
apply the core functional modules of Quarry to facilitate different steps of the
data integration lifecycle, and observe the high level of automation that the
state of the art approaches can provide for them, while also pinpointing the
needed user involvement along the way.

Our final goal is to provide an end-to-end user-centered platform for man-
aging the complete data integration lifecycle in the context of complex Big
Data settings, specifically (but not only) focusing on the variety of data com-
ing from numerous external data sources. To this end, our future directions are
primarily focused on: (1) providing higher automation of the flow deployment
process by facilitating dynamic flow reparation mechanisms [52] and engine
selection and optimization for the resulting multi-flow [44,29], (2) enabling

Quarry: A User-centered Big Data Integration Platform 35

users to effectively incorporate parts of their data analysis pipeline into the
platform for boosting data preparation specific to their analytical needs [7],
and (3) performing a unified end-to-end evaluation of the platform, both for
scrutinizing the core functional modules and for assessing Quarry ’s usability
for non-technical users (e.g., statisticians or epidemiologists).

Acknowledgements We thank Dr. Lise Grout and Dr. Pedro Albajar-Viñas from the
Neglected Tropical Diseases (NTD) department at WHO, for providing the use case. This
work is partially supported by GENESIS project, funded by the Spanish Ministerio de
Ciencia, Innovación y Universidades under project TIN2016-79269-R.

References

1. Abiteboul, S., André, B., Kaplan, D.: Managing your digital life. Commun. ACM 58(5),
32–35 (2015)

2. Angles, R., Arenas, M., Barceló, P., Hogan, A., Reutter, J.L., Vrgoc, D.: Foundations of
modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–68:40
(2017)

3. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv. 40(1),
1:1–1:39 (2008)

4. Bean, R.: Variety, not volume, is driving big data initia-
tives (2016). URL https://sloanreview.mit.edu/article/

variety-not-volume-is-driving-big-data-initiatives

5. Bilalli, B., Abelló, A., Aluja-Banet, T., Munir, R.F., Wrembel, R.: PRESISTANT: data
pre-processing assistant. In: CAiSE Forum, pp. 57–65 (2018)

6. Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: Intelligent assistance for data
pre-processing. Computer Standards & Interfaces 57, 101–109 (2018)

7. Bilalli, B., Abelló, A., Aluja-Banet, T., Wrembel, R.: PRESISTANT: Learning based
assistant for data pre-processing. Data & Knowledge Engineering 123, 100–122 (2019)

8. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: Answering SPARQL queries over relational
databases. Semantic Web 8(3), 471–487 (2017)

9. Ceravolo, P., Azzini, A., Angelini, M., Catarci, T., Cudré-Mauroux, P., Damiani, E.,
Mazak, A., van Keulen, M., Jarrar, M., Santucci, G., Sattler, K., Scannapieco, M.,
Wimmer, M., Wrembel, R., Zaraket, F.A.: Big data semantics. J. Data Semantics 7(2),
65–85 (2018)

10. Chen, Y., Alspaugh, S., Katz, R.H.: Interactive analytical processing in big data systems:
A cross-industry study of mapreduce workloads. PVLDB 5(12), 1802–1813 (2012)

11. Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A., Ilyas, I.F., Ouzzani, M., Tang,
N.: Nadeef: A commodity data cleaning system. In: SIGMOD, pp. 541–552 (2013)

12. Deng, D., Fernandez, R.C., Abedjan, Z., Wang, S., Stonebraker, M., Elmagarmid, A.K.,
Ilyas, I.F., Madden, S., Ouzzani, M., Tang, N.: The data civilizer system. In: CIDR
(2017)

13. Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann
(2012)

14. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J., Mad-
den, S., Maier, D., Mattson, T., Zdonik, S.B.: The BigDAWG Polystore System. SIG-
MOD Record 44(2), 11–16 (2015)

15. Fernandez, R.C., Madden, S.: Termite: a system for tunneling through heterogeneous
data. In: aiDM@SIGMOD, pp. 7:1–7:8 (2019)

16. Fletcher, G.H.L., Mandreoli, F.: No users no dataspaces! query-driven dataspace orches-
tration? In: SEBD, pp. 150–157 (2016)

17. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new abstrac-
tion for information management. SIGMOD Record 34(4), 27–33 (2005)

https://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives
https://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives

36 Petar Jovanovic et al.

18. Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational plans for data integration. In:
IJCAI (1999)

19. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman,
J.D., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation: Data models and
languages. J. Intell. Inf. Syst. 8(2), 117–132 (1997)

20. Golshan, B., Halevy, A.Y., Mihaila, G.A., Tan, W.: Data integration: After the teenage
years. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pp.
101–106 (2017)

21. Gorawski, M., Lorek, M.: Efficient storage, retrieval and analysis of poker hands: An
adaptive data framework. Applied Mathematics and Computer Science 27(4), 713–726
(2017)

22. Gorton, I., Klein, J.: Distribution, data, deployment: Software architecture convergence
in big data systems. IEEE Software 32(3), 78–85 (2015)

23. Hai, R., Geisler, S., Quix, C.: Constance: An intelligent data lake system. In: SIGMOD,
pp. 2097–2100 (2016)

24. Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.:
Managing google’s data lake: an overview of the goods system. IEEE Data Eng. Bull.
39(3), 5–14 (2016)

25. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: The teenage years. In:
Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul,
Korea, September 12-15, 2006, pp. 9–16 (2006)

26. Hewasinghage, M., Varga, J., Abelló, A., Zimányi, E.: Managing polyglot systems meta-
data with hypergraphs. In: ER, pp. 463–478 (2018)

27. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Incremental consolidation of data-
intensive multi-flows. IEEE Trans. Knowl. Data Eng. 28(5), 1203–1216 (2016)

28. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A., Mayorova, D.: A requirement-driven
approach to the design and evolution of data warehouses. Inf. Syst. 44, 94–119 (2014)

29. Jovanovic, P., Simitsis, A., Wilkinson, K.: Engine independence for logical analytic flows.
In: ICDE, pp. 1060–1071 (2014)

30. Konstantinou, N., Koehler, M., Abel, E., Civili, C., Neumayr, B., Sallinger, E., Fernan-
des, A.A.A., Gottlob, G., Keane, J.A., Libkin, L., Paton, N.W.: The VADA architecture
for cost-effective data wrangling. In: SIGMOD, pp. 1599–1602 (2017)

31. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS, pp. 233–246
(2002)

32. Lerman, K., Minton, S., Knoblock, C.A.: Wrapper maintenance: A machine learning
approach. J. Artif. Intell. Res. 18, 149–181 (2003)

33. Luján-Mora, S., Trujillo, J.: Applying the UML and the unified process to the design of
data warehouses. JCIS 46(5), 30–58 (2006)

34. Munir, R.F., Nadal, S., Romero, O., Abelló, A., Jovanovic, P., Thiele, M., Lehner,
W.: Intermediate results materialization selection and format for data-intensive flows.
Fundam. Inform. 163(2), 111–138 (2018)

35. Nadal, S., Rabbani, K., Romero, O., Tadesse, S.: ODIN: A dataspace management
system. In: ISWC, pp. 185–188 (2019)

36. Nadal, S., Romero, O., Abelló, A., Vassiliadis, P., Vansummeren, S.: An integration-
oriented ontology to govern evolution in big data ecosystems. Inf. Syst. 79, 3–19 (2019)

37. Popovic, A., Hackney, R., Tassabehji, R., Castelli, M.: The impact of big data analytics
on firms’ high value business performance. Information Systems Frontiers 20(2), 209–
222 (2018)

38. Priyatna, F., Corcho, Ó., Sequeda, J.F.: Formalisation and experiences of r2rml-based
SPARQL to SQL query translation using morph. In: WWW, pp. 479–490 (2014)

39. Quix, C., Hai, R.: Data lake. In: Encyclopedia of Big Data Technologies. (2019)
40. Rabbani, K.: Supporting the Semi-Automatic Creation of the Target Schema in

Data Integration Systems. Master’s thesis, Technische Univesitat Berlin - Universitat
Politècnica de Catalunya, BarcelonaTech (2019)

41. Saltor, F., Castellanos, M., Garćıa-Solaco, M.: Suitability of data models as canonical
models for federated databases. SIGMOD Record 20(4), 44–48 (1991)

Quarry: A User-centered Big Data Integration Platform 37

42. Sarma, A.D., Dong, X.L., Halevy, A.Y.: Uncertainty in data integration and dataspace
support platforms. In: Schema Matching and Mapping, pp. 75–108 (2011)

43. Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-space optimization of ETL workflows.
IEEE Trans. Knowl. Data Eng. 17(10), 1404–1419 (2005)

44. Simitsis, A., Wilkinson, K., Dayal, U., Hsu, M.: HFMS: managing the lifecycle and
complexity of hybrid analytic data flows. In: ICDE, pp. 1174–1185 (2013)

45. Skoutas, D., Simitsis, A.: Ontology-based conceptual design of ETL processes for both
structured and semi-structured data. Int. J. Semantic Web Inf. Syst. 3(4), 1–24 (2007)

46. Stonebraker, M.: The Case for Polystores – ACM SIGMOD Blog (2019). [Online; ac-
cessed 27. Jun. 2019]

47. Stonebraker, M., Bruckner, D., Ilyas, I.F., Beskales, G., Cherniack, M., Zdonik, S.B.,
Pagan, A., Xu, S.: Data Curation at Scale: The Data Tamer System. In: CIDR (2013)

48. Tadesse, S., Gómez, C., Romero, O., Hose, K., Rabbani, K.: ARDI: Automatic Gener-
ation of RDFS Models from Heterogeneous Data Sources. In: EDOC (2019)

49. Terrizzano, I.G., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: The challenging
yourney from the wild to the lake. In: CIDR (2015)

50. Touma, R., Romero, O., Jovanovic, P.: Supporting data integration tasks with semi-
automatic ontology construction. In: DOLAP, pp. 89–98 (2015)

51. Varga, J., Romero, O., Pedersen, T.B., Thomsen, C.: Towards next generation BI sys-
tems: The analytical metadata challenge. In: DaWaK, pp. 89–101 (2014)

52. Wojciechowski, A.: ETL workflow reparation by means of case-based reasoning. Infor-
mation Systems Frontiers 20(1), 21–43 (2018)

	Introduction
	Related Work
	Use Case: The Fight against NTDs at WHO
	Quarry in Support of the Big Data Integration Lifecycle
	Quarry's Functional Architecture
	Conclusions and Future Work

